Oscillation criteria for nth order nonlinear neutral differential equations ${ }^{\text {/u }}$

Yanxiang Shi

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, PR China

ARTICLE INFO

Keywords:

Oscillation
Neutral differential equations
Eventually positive solution

A B S TRACT

Sufficient conditions are established for the oscillation of nth order neutral differential equations of the form

$$
\left(r(t)\left(x(t)|x(t)|^{\alpha-1}+p(t) x(\tau(t))\right)^{(n-1)}\right)^{\prime}+q(t) f(x(\sigma(t)))=0, \quad t \geqslant t_{0}
$$

where $n \geqslant 2$ is even integer, $\alpha \geqslant 1, p, q \in C\left(\left[t_{0},+\infty\right), R\right), f \in C(R, R)$. The results obtained extend some of the known results.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we are concerned with the oscillation behavior of solution of the nth order neutral differential equations of the form

$$
\begin{equation*}
\left(r(t)\left(x(t)|x(t)|^{\alpha-1}+p(t) x(\tau(t))\right)^{(n-1)}\right)^{\prime}+q(t) f(x(\sigma(t)))=0, \quad t \geqslant t_{0} \tag{1.1}
\end{equation*}
$$

where $n \geqslant 2$ is even integer, $\alpha \geqslant 1, p, q \in C\left(\left[t_{0},+\infty\right), R\right), f \in C(R, R)$. we assume that
$\left(\mathrm{H}_{1}\right) 0 \leqslant p(t) \leqslant 1, q(t) \geqslant 0$;
$\left(\mathrm{H}_{2}\right) r \in \mathrm{C}^{\prime}\left(\left[t_{0},+\infty\right),(0,+\infty)\right), r(t)>0, r^{\prime}(t) \geqslant 0, \int_{t_{0}}^{+\infty} \frac{1}{r(t)} d t=\infty$;
$\left(\mathrm{H}_{3}\right) \frac{f(x)}{|x|^{\alpha-1} x} \geqslant \beta>0$, for $x \neq 0, \beta$ is a constant;
$\left(\mathrm{H}_{4}\right) \tau, \sigma \in C\left(\left[t_{0},+\infty\right),[0,+\infty)\right), \tau(t) \leqslant t, \lim \tau(t)=\infty$;
$\left(\mathrm{H}_{5}\right) \sigma \in \mathrm{C}^{\prime}\left(\left[t_{0},+\infty\right),(0,+\infty)\right), \sigma(t) \leqslant t, \sigma^{\prime}(\boldsymbol{t})>0, \lim _{t \rightarrow \infty} \sigma(t)=\infty$.
By a solution of Eq. (1.1), we mean a function $x(t) \in C\left(\left[t_{k},+\infty\right), R\right)$ for some $t_{k} \geqslant t_{0}$, such that $x(t)|x(t)|^{\alpha-1}+p(t) x(\tau(t)) \in C^{n}\left(\left[t_{k},+\infty\right), R\right)$ and $r(t)\left(x(t)|x(t)|^{\alpha-1}+p(t) x(\tau(t))\right)^{(n-1)} \in C^{\prime}\left(\left[t_{k},+\infty\right), R\right)$ and satisfies Eq. (1.1) on $\left[t_{k},+\infty\right)$. a nontrivial solution $x(t)$ of Eq. (1.1) is called oscillatory in $\left[t_{0},+\infty\right), t_{0}>0$ if it has arbitrarily large zeros. Another word, a nontrivial solution $x(t)$ of Eq. (1.1) is called oscillatory if there exist a sequence of real numbers $\left\{t_{k}\right\}_{k=1}^{\infty}$, diverging to

[^0]$+\infty$, such that $x\left(t_{k}\right)=0$. Otherwise the solution is called nonoscillatory. Neutral differential Eq. (1.1) is called be oscillatory if all its solutions are oscillatory.

We develop certain theorems related to the oscillatory behavior and provide sufficient conditions for the above equation to be oscillatory. The oscillatory behavior of neutral differential equation of nth order has been the subject of several papers [1-10]. Eq. (1.1) with $r(t)=1$, namely, the equation

$$
\begin{equation*}
\left(\left(x(t)|x(t)|^{\alpha-1}+p(t) x(\tau(t))\right)^{(n-1)}\right)^{\prime}+q(t) f(x(\sigma(t)))=0, \quad t \geqslant t_{0} \tag{1.2}
\end{equation*}
$$

and related equations have been investigated by Dahiya and Candan [3], Candan and Dahiya [6,7]. Our result are general than those of [3,6,7].

If $n=2, \alpha=1$, then Eq. (1.1) becomes

$$
\begin{equation*}
\left(r(t)(x(t)+p(t) x(\tau(t)))^{\prime}\right)^{\prime}+q(t) f(x(\sigma(t)))=0, \quad t \geqslant t_{0} \tag{1.3}
\end{equation*}
$$

and related equations have been studied by Ruan [11] and Li and Liu [12]. The purpose of this paper is to improve and extend above mentioned results. We shall further offer some new criteria for the oscillation of Eq. (1.1).

2. Main results

In order to prove our theorems we shall need the following three lemmas.
Lemma 2.1 [13]. Let $y(t)$ be an n times differentiable function on $\left[t_{0},+\infty\right)$ of constant $\operatorname{sign}, y^{(n)}(t) \neq 0$ on $\left[t_{0},+\infty\right)$ which satisfies $y^{(n)}(t) y(t) \leqslant 0$. Then
(I_{1}) There exists $t_{1} \geqslant t_{0}$ such that the functions $y^{(i)}(t), i=1,2 \ldots, n-1$ are of constant sign on $\left[t_{1},+\infty\right)$;
$\left(\mathrm{I}_{2}\right)$ There exists a number $l \in\{1,3,5, \ldots, n-1\}$ when n is even, or $l \in\{0,2,4, \ldots, n-1\}$ when n is odd, such that $y(t) y^{(i)}(t)>0$ for $i=0,1, \ldots, l, t \geqslant t_{1} ;(-1)^{n+i+1} y(t) y^{(i)}(t)>0$ for $i=l+1, \ldots, n, t \geqslant t_{1}$.

Lemma 2.2 [13]. If the function $y(t)$ is as in Lemma 2.1 and $y^{(n-1)}(t) y^{(n)}(t) \leqslant 0$ for $t \geqslant t_{0}$, then for every $\lambda, 0<\lambda<1$, there exist a constant $M>0$ such that

$$
|y(\lambda t)| \geqslant M t^{n-1}\left|y^{(n-1)}(t)\right|
$$

for all large t.

Lemma 2.3. Suppose that $x(t)$ is an eventually positive solution of Eq. (1.1), let

$$
\begin{equation*}
z(t)=x(t)|x(t)|^{\alpha-1}+p(t) x(\tau(t)) \tag{2.1}
\end{equation*}
$$

then there exists a number $t_{1} \geqslant t_{0}$ such that

$$
\begin{equation*}
z(t)>0, \quad z^{\prime}(t)>0, \quad z^{(n-1)}(t) \geqslant 0, \quad z^{(n)}(t) \leqslant 0, \quad t \geqslant t_{1} . \tag{2.2}
\end{equation*}
$$

Proof. Since $x(t)$ is an eventually positive solution of Eq. (1.1), there exists a number $t_{1} \geqslant t_{0}$ such that $x(t)>0, x(\tau(t))>0, x(\sigma(t))>0, t \geqslant t_{1}$. From (2.1), we have $z(t)>0, t \geqslant t_{1}$ and

$$
\left(r(t) z^{(n-1)}(t)\right)^{\prime}=-q(t) f(x(\sigma(t))) \leqslant 0, \quad t \geqslant t_{1} .
$$

It follows that the function $r(t) z^{(n-1)}(t)$ is decreasing and $z^{(n-1)}(t)$ is eventually of one sign. We claim that $z^{(n-1)}(t) \geqslant 0, t \geqslant t_{1}$. Otherwise, if there exist a $\bar{t}_{0} \geqslant t_{1}$ such that $z^{(n-1)}\left(\bar{t}_{0}\right)<0, t \geqslant \bar{t}_{0}$ and

$$
r(t) z^{(n-1)}(t) \leqslant r\left(\bar{t}_{0}\right) z^{(n-1)}\left(\bar{t}_{0}\right)=-C \quad(C>0)
$$

which implies that $r(t) z^{(n-1)}(t) \leqslant-C, t \geqslant \bar{t}_{0}$, that is $-z^{(n-1)}(t) \geqslant \frac{C}{r(t)}$, integrating the above inequality from \bar{t}_{0} to t, we have

$$
z^{(n-2)}(t) \leqslant z^{(n-2)}\left(\bar{t}_{0}\right)-C \int_{\bar{t}_{0}}^{t} \frac{1}{r(s)} d s
$$

Letting $t \rightarrow+\infty$, from $\left(\mathrm{H}_{2}\right)$, we get $\lim _{t \rightarrow \infty} z^{(n-2)}(t)=-\infty$, which implies $z(t)$ is eventually negative by Lemma 2.1. This is a contradiction. Hence $z^{(n-1)}(t) \geqslant 0, t \geqslant t_{1}$. Furthermore, from Eq. (1.1) and $\left(\mathrm{H}_{2}\right)$, we have

$$
r(t) z^{(n)}(t)=-r^{\prime}(t) z^{(n-1)}(t)-q(t) f(x(\sigma(t))) \leqslant 0, \quad t \geqslant t_{1} .
$$

This imply that $z^{(n)}(t) \leqslant 0, t \geqslant t_{1}$. From Lemma 2.1 again (note n is even), we have $z^{\prime}(t)>0, t \geqslant t_{1}$. This completes the proof.

https://daneshyari.com/en/article/4627849

Download Persian Version:
https://daneshyari.com/article/4627849

Daneshyari.com

[^0]: * This work is supported by the National Natural Science Foundation of China (Nos. 11101251, 11002083 and 11001157) and Research Project Supported by Shanxi Scholarship Council of China (No. 2013-019).

 E-mail address: hongyu@sxu.edu.cn

