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a b s t r a c t

We provide exact formulas about the survival copula of an exchangeable random vector of
residual lifetimes when some of the components have failed. Specific computations are car-
ried out in the case of Archimedean copulas and the evolution of dependence after succes-
sive failures of some components is shown numerically via measures of association.
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1. Introduction

Let T ¼ ðT1; . . . ; TnÞ be a random vector on a suitable probability space representing the lifetimes of an engineering
system composed by several components that are possibly subject to failure. Although the components are often assumed
to be independent, this assumption may not be valid in practice, since a system is usually working in a common environment
and suffers from the same stress. In order to introduce dependence in the lifetimes in a convenient way, the concept of
copula has been recently used in various situations: see, for instance, [35,24,20,30,12–15,29,28] and the references
therein.

The study of the dependence (e.g., copula-based) properties of T at the increase of age has been the object of several re-
cent investigations; see, for instance, [21,22,5], which are mainly motivated by applications to risk management, and [3,32],
which adopt the viewpoint of reliability analysis. In particular, in the case n ¼ 2 and in absence of any failure in the system,
such a topic has been investigated in [9].

Following the copula approach, our aim is to study the evolution of survival distributions among residual lifetimes of T
when some of the vector components have failed. These investigations have been considered, for instance, in credit risk,
where the main interest is in the default dependencies between obligors (see, for instance, [33,26]) and their impact on
the survival probability of the remaining variables.

Here, instead, we suppose that at least two components of the system remains alive and we focus on the calculation of
survival copulas at different residual lifetimes and in presence of failures of the remaining components. Such studies are
hence related to the determination of the evolution of dependence properties of an n� kþ 1 out of n system, i.e. a system
that works successfully until k of the components have failed. In particular, compared to previous approaches that usually
assume independence or conditional independence between the system lifetimes (see, e.g., [2]), we adopt a general form of
dependence as described by the survival copula of the system. Moreover, notice that, the information about the copula at
different times (together with the marginal behaviour) can be used to express and interpret some multivariate Bayesian
notions of aging of the whole system [4,16,10].
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The rest of the paper is organized as follows. In Section 2 we present the preliminaries about our model. Section 3 pre-
sents exact formulas about the survival copula of residual lifetimes with and without failures in the system. In order to illus-
trate the main results, specific computations are carried out in the case of Archimedean copulas (the so-called TTE models in
[4]) and the evolution of dependence is shown numerically with the calculation of suitable measures of association. Section 4
concludes.

2. The survival model

We consider an exchangeable survival model of lifetime T ¼ ðT1; . . . ; TnÞ such that each component is a non-negative ran-
dom variable. Denote by T1:n; . . . ; Tn:n the order statistics of T. The vector T is determined by the joint survival function

Fðx1; . . . ; xnÞ ¼ PðT1 > x1; . . . ; Tn > xnÞ;

with survival margins FðJÞðx1; . . . ; xrÞ ¼ PðTi1 > x1; . . . ; Tir > xrÞ, where J ¼ fi1; . . . ; irg is a subset of f1; . . . ;ng with cardinality
r ¼ jJj. Notice that the exchangeability assumption is less restrictive than it could appear at a first glance. In fact, given any
vector T of lifetimes it is always possible to trace back to an exchangeable vector X having the same order statistics of T, and,
hence, sharing similar properties in terms of lifetime of the system (for more details, see [18,36]).

We assume that F is absolutely continuous, with density f and univariate survival margin equal to G that is strictly
decreasing in ð0;þ1Þ. As known (see e.g. [31,20,25]), the dependence properties of a survival function F can be described
in terms of the corresponding survival copula K given, for all u 2 ½0;1�n, by

KðuÞ ¼ F G�1ðu1Þ; . . . ;G�1ðunÞ
� �

: ð1Þ

Here our aim is to study the time evolution of the dependence among the components of T, with special attention to the
evolution of dependence at the instant of failure of one component. To this end, we introduce the following notation. For
every t > 0 and k ¼ 0;1; . . . ;n� 2, we define the event Ht1 ;...;tk

t , which represents the history of the model at time t when
the last k components of T have failed at known times 0 < t1 < � � � < tk. In particular, in view of the exchangeability of
the system, we suppose without loss of generality that the failed components are the k last ones and the failures affect first
the last component, then the component of index n� 1, and so on. We also suppose that, at any instant, at most one failure
may occur.

We denote by L ¼ fLðT1; . . . ; Tn�kjHt1 ;...;tk
t Þ; t > 0g the family of survival probability functions of the residual lifetimes of T

conditional on the history Ht1 ;...;tk
t . Finally, we denote by K ¼ fKð�jHt1 ;...;tk

t Þ; t > 0g the family of copulas associated with the
survival probability functions of L. Following the approach of [9], it is sometimes convenient to express the properties of
K in terms of an equivalent stochastic model that has a simplified form, as expressed in the following result.

Proposition 2.1. Let U be a random vector on a suitable probability space, with distribution function equal to the copula C and k–

th order statistics denoted by Uk:m. Let Cð�jeHz1 ;...;zk
z Þ be the copula associated with LðUjeHz1 ;...;zk

z Þ, where, for i ¼ 0;1; . . . ; k; zi ¼ GðtiÞ
and 1 > z1 > � � � > zk,eHz1 ;...;zk

z ¼ fUk:n ¼ zg

for some z 2 ð0; zkÞ. Denote eC ¼ ðCð�jeHz1 ;...;zk
z Þ; z 2 ð0;1�Þ. Then the mapping

K! eC; Kð�jHt1 ;...;tk
t Þ# Cð�jeHz1 ;...;zk

z Þ;

where z ¼ GðtÞ, is bijective.

Proof. The proof is a direct consequence of Sklar’s Theorem (see, e.g., [34,7]) and the results of [9]. h

In the following, if no confusion may arise, we adopt the convention Ht1 ;...;tk
t ¼ Hk

t and eHz1 ;...;zk
z ¼ eHk

z . Notice that

K ¼ Kð�jH0
t¼0Þ ¼ Cð�jeH0

z¼1Þ ¼ C.
The equivalence of the two models of Proposition 2.1 will be extensively used in the remaining part of the work in order

to prove our results.

3. Dependence structure of residual lifetimes

In this section we give the expression of the survival copula of residual lifetimes both when one component fails and after
this failure. In order to provide meaningful expressions, some assumptions are needed.

All the survival copulas we are considering are supposed to be exchangeable (since they are associated to exchangeable
lifetimes) and absolutely continuous. Moreover, all their mixed partial derivatives, when mentioned, are supposed to be con-
tinuous and with invertible one-dimensional sections.

We denote by @C
@ui
ðuÞ, or simply @ iCðuÞ, the partial derivative of C with respect to the i-th variable, computed at the point

u 2 ½0;1�n. Analogous notations are used for the mixed partial derivatives.
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