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The error between two nonlinear terms is a key point of many synchronization problems,
however, the Lipschitz constant of the nonlinear term is not always easy to calculate for the
stability analysis of the controlled error system, thus the nonlinear systems with unknown
parameters and unknown Lipschitz constant is considered in this paper. Their scalar syn-
chronous controller is proposed based on the thought of backstepping design. Without
the need to evaluate the invariant set and calculate the Lipschitz constant, an assistant
adaptive estimator is designed for the Lipschitz constant. What’s more, as a problem solv-
ing skill, two different estimators are used on the same unknown parameter. Finally, the
synchronization control for both chaotic autonomous Van der Pol–Duffing (ADVP) systems
and chaotic Genesio systems with unknown parameters are given as examples to verify the
control effect.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Backstepping design was first given in [1]. With the development of nonlinear control, it has become a systematic and
effective method to resolve the control and synchronization problems [2–11]. The basic steps of backstepping control can
be simply described as decomposing the system into several lower dimensional subsystems, designing partial Lyapunov
functions and virtual controllers, and finally getting the scalar controller, and hence backstepping controller is especially
suitable for chaos control because irregular oscillations often exist in chaotic systems and the controller is not convenient
to be added on all subsystems.

Backstepping design has been widely used in the synchronization problems. In [12–14], synchronization of chaotic auton-
omous Van der Pol–Duffing (ADVP) system, chaotic Josephson junction and hyperchaotic Liu system was considered, without
any uncertainty considered. And in [15,16], systems with unknown or uncertain sections and external disturbances were
studied. In [15], backstepping design was combined with cerebellar model articulation controller, which could synchronize
one system to the other with disturbances and uncertainties. In [16], the Gaussian radial basis function neural network was
lead in the controller to approximate the unknown nonlinear terms.

In fact, an important problem in synchronization control is the treatment of the error between two nonlinear terms like
FðeÞ ¼ f ðxÞ � f ðyÞ, where f ð�Þ is the nonlinear link of the master system and the slave system. FðeÞand f ðxÞwere often substituted
into the controller or approximated as a whole in many literatures, such as [17,16]. In [18], solutions to the stabilization
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problems of nonlinear discrete-time system were provided in the form of linear matrix inequalities (LMIs), where the unknown
nonlinearities were required to satisfy Lipschitz conditions in the state and delayed-state. In [19], Lipschitz constant of f ð�Þwas
calculated, but it is a complex process. Actually, Lipschitz constants are not easy to calculate in most cases. Hence, in this paper
we will adopt a straight method: adaptive estimation to the Lipschitz constant of f ð�Þ, and we will consider the synchronization
of the nonlinear system in the form of the combination of a linear subsystem and a scalar nonlinear subsystem, with unknown
Lipschitz constant and multiple unknown parameters.

Then the synchronous effect of the controller will be validated by both chaotic ADVP systems and chaotic Genesio sys-
tems. Early, ADVP system appeared in [20,21]. Its form is equivalent to Chua’s autonomous circuit but with a cubic nonlinear
element. Its dynamic behavior was discussed in [22], which contains equilibrium point, periodic orbit and bifurcation. Re-
cently, modified ADVP model was given in [12] with further analysis on the stability conditions of its equilibrium point
and the existence of the period solution. In [22], the modified ADVP’s abundant dynamic behaviors were discussed, such
as the local codimension one, two and three bifurcations. In addition, chaos control of ADVP model was achieved in [23–
25], and the synchronization between certain ADVP systems was realized in [2,12] using back stepping design.

Chaotic Genesio system (CGS) was proposed in 1992 [26], which consists of three simple ordinary differential equations
with a simple nonlinear term. In recent years, increasing attention has been paid on this system. In [27], the high-accuracy
solution of CGS was given, which can be treated as an accurate method of analyzing its dynamic behavior. In [28], a design
method for the control of CGS was proposed based on the combination of Lyapunov stability theorem and LMI optimization
approach. The chaos control and chaos synchronization of the CGS were also discussed in [29–31]. The backstepping ap-
proach was also used to solve these problems in [32,33]. However, the discussion on the case of unknown Lipschitz constant
is relatively rare. This problem will be solved in this paper.

This paper is organized as follows. In Section 2, we will give the system’s models and the problem to be settled. In Section
3, the design of adaptive backstepping synchronous controller will be expounded in detail. In Section 4, chaos synchroniza-
tion of chaotic ADVP system and CGS will be provided as examples to verify the control effect.

2. Systems’ description

For common adaptability of the following procedure, we consider the following response system and driving system:

_�x ¼ kf ð�xÞ þ ðbþ kbÞ�xþ ðcþ kcÞ�yþ u;
_�y ¼ ðAþ kAÞ�yþ b�x;

(
ð1Þ

_x ¼ kf ðxÞ þ ðbþ kbÞxþ ðcþ kcÞy;
_y ¼ ðAþ kAÞyþ bx;

�
ð2Þ

where �x; x 2 R, �y; y 2 Rn are the state variables, u 2 R is a scalar controller, A 2 Rn�n; b 2 Rn are the coefficient matrix and
coefficient vector. Without loss of generality, let k > 0. Besides, the nonlinear mapping f ð�Þ satisfies jf ð�xÞ � f ðxÞj 6 Lj�x� xj,
and Lipschitz constant L is unknown. Other factors are scalars, matrices and vectors with proper dimensions, of which
k; kb; kc; kA are unknown, and kA ¼

Pm
i¼1aiAi, where Ai 2 Rn�n ði ¼ 1;2; . . . ;mÞ are known constant matrices,

ai ði ¼ 1;2; . . . ;mÞ is unknown weighting constants.
Let ex ¼ �x� x, ew ¼ �y� y, and e ¼ eT

x ; e
T
w

� �T, then the error system is

_ex ¼ kFðexÞ þ ðbþ kbÞex þ ðcþ kcÞew þ u; ðaÞ
_ew ¼ ðAþ kAÞew þ bex; ðbÞ

�
ð3Þ

where ex 2 R, ew 2 Rn are state variables, and let FðexÞ ¼ f ð�xÞ � f ðxÞ. The object is to design the controller u to make system
(3) asymptotically stable.

3. Synchronization control based on adaptive backstepping approach

3.1. Virtual controller and system transformation

Let the virtual controller of Eq. (3b) be exðewÞ ¼ kT � cTPm
i¼1âiAi

� �
ew, where âi is the estimation of ai, k 2 Rn is an unde-

termined constant vector. Denote �A ¼ Aþ bkT, suppose that c 2 Rn satisfies cTb ¼ 1. Select _̂ai ¼ eT
wPAiew ði ¼ 1;2; . . . ;mÞ as

the adaptive law of âi, and define a partial Lyapunov function V1 ¼ eT
wPew þ

Pm
i¼1 ~a2

i , where ~ai ¼ ai � âi and P is a positive def-
inite symmetric matrix. The time derivative of V1 is given by

_V1 ¼ 2eT
wP _ew þ 2

Xm

i¼1

~ai
_~ai ¼ 2eT

wP Aew þ bkTew þ
Xm

i¼1

aiAiew � bcT
Xm

i¼1

âiAiew

" #
� 2

Xm

i¼1

~aieT
wPAiew ¼ eT

w
�ATP þ P�A
� �

ew: ð4Þ

According to above virtual controller exðewÞ, we define an invertible coordinate transformation ~ex ¼ ex � kT � cTPm
i¼1âiAi

� �
ew,

ew ¼ ew, and Eq. (3) is transformed into
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