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a b s t r a c t

We study the control system governed by a class of abstract nonlocal fractional differential
equations. By using the fractional calculus and approximating technique, we give the
approximate problem of the control system and get the compactness of approximate solu-
tions set. Then new sufficient conditions for the approximate controllability of the control
system are obtained when the compactness conditions or Lipschitz conditions for the non-
local function are not required.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the approximate controllability of the following fractional differential equations with non-
local conditions

DqxðtÞ ¼ AxðtÞ þ f ðt; xðtÞÞ þ BuðtÞ; t 2 J ¼ ½0; b�;
xð0Þ þ gðxÞ ¼ x0;

�
ð1Þ

where the state variable xð�Þ takes values in the Hilbert space X; Dq is the Caputo fractional derivative of order q with
0 < q 6 1; A : DðAÞ � X ! X is the infinitesimal generator of a strongly continuous semigroup TðtÞ on a Hilbert space X;
the control function uð�Þ is given in L2ðJ;UÞ;U is a Hilbert space; B is a bounded linear operator from U into X; f and g are
appropriate continuous functions to be specified later.

Fractional differential equations are considered as useful models for describing real world problems, which cannot be de-
scribed using classical integer order differential equations, see for instance [1–3]. El-Borai [4] studied fundamental solution
of fractional evolution equations in a Banach space. By using Laplace transformation, Wang and Zhou [5] give the concept of
mild solutions to a class of fractional evolution equations. Balachandran and Park [6] prove the existence of solutions of frac-
tional nonlocal evolution equations by using fractional calculus and fixed point theorems. The fractional differential equa-
tions with nonlocal conditions are also considered by [7–10], as nonlocal problems have better effects in applications
than the classical ones xð0Þ ¼ x0. The initial work of nonlocal condition xð0Þ þ gðxÞ ¼ x0 applied to abstract differential equa-
tion is due to Byszewski and Lakshmikantham [11]. Then different topics on the existence and qualitative properties of solu-
tions are considered. For more details we refer the reader to [12–15] and references therein.

On the other hand, the issue of controllability plays an important role in control theory and engineering. The problem of
controllability of various kinds of differential, integrodifferential equations and impulsive differential equations are studied,
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see [16,17]. Now this issue has been developed into three directions. The first one is concerned with exact controllability,
which steer the system to arbitrary final state. The main approach is to convert the controllability problem into a fixed point
problem with assumption that the controllability operator has an induced inverse, see [18–20]. Hernández and O’Regan [21]
yet have shown that some papers on exact controllability of abstract control systems contain a similar technical error when
the compactness of semigroup TðtÞ and other hypotheses are satisfied, i.e., in this case the application of controllability re-
sults is restricted to the finite-dimensional space. Recently, the method of measure of noncompactness is adopted to over-
come this problem and get the exact controllability under noncompact semigroup, see [22,23]. The second direction is null
controllability, i.e., for any given initial state x0, there exists a control u such that the system can be steered to final state of
zero point. It can be seen as a special case of exact controllability in some way. The third direction is concerned with approx-
imate controllability, which means that the system can be steered to arbitrary small neighborhood of final state, see [24,25].
As exact controllability holds true only in finite-dimensional space under the compact assumptions to semigroup TðtÞ or the
operator B, it is important to study this weaker concept of controllability in abstract spaces.

Recently, the approximate controllability of fractional order differential systems have been considered by Kumar et al.
[26] and Sakthivel et al. [27,28], where the operator semigroup is supposed to be compact and the probability density func-
tions are introduced to define the mild solution. Sakthivel et al. [27], Mahmudov [29] studied the nonlocal fractional differ-
ential system (1) when the nonlocal function g is supposed to be Lipschitz continuous or compact in different frameworks.
When some fixed point theorems such as Banach’s and Schauder’s fixed point theorems are applied to get a fixed point for
solution operators, functions f and g are often supposed to be compact or Lipschitz continuous. However, this property is not
often satisfied in practical applications. One purpose of this article is to investigate the approximate controllability of system
(1) without the Lipschitz continuous or compact assumptions on the nonlocal item g. Actually, g is only assumed to be con-
tinuous and is completely determined on ½d; b� for some small d > 0. Meanwhile, in order to get the existence of solutions to
control system (1), we construct the approximate problem of system (1) (see formula (9)) and get the compactness of the
approximate solutions set (see formula (11)). It is different from the usual approach that the fixed point theorem is applied
directly to the concerned solution operator. So our results can be regarded as extension and development of the existing
conclusions.

This article is organized in the following way. In Section 2, we recall some definitions on Caputo fractional derivatives and
mild solutions to Eq. (1). In Section 3, the existence result of mild solutions is given by operator semigroup theory and
approximating method. In Section 4, sufficient conditions for the approximate controllability are proved. Finally, an example
is given to illustrate the application of our results.

2. Preliminaries

Throughout this paper, let N; R, Rþ be the set of positive integers, real numbers and positive real numbers, respectively.
We denote by X a Hilbert space with norm k � k; Cð½0; b�; XÞ the space of all X�valued continuous functions on ½0; b�; BðXÞ the
space of all bounded linear operators from X to X with the norm kQkBðXÞ ¼ supfkQðxÞk : kxk ¼ 1g, where Q 2 BðXÞ. In this pa-
per, let A be the infinitesimal generator of C0 semigroup fTðtÞgtP0 of uniformly bounded liner operators on X. Clearly,
M ¼ supt2½0;1ÞkTðtÞk <1.

Now we recall some definitions and results on fractional derivative and fractional differential equations.

Definition 2.1 [30]. The Riemann–Liouville fractional integral of a function
f 2 L1ð½0;1�; RþÞ of order a 2 Rþ is defined by

Iaf ðtÞ ¼ 1
CðaÞ

Z t

0
ðt � sÞa�1f ðsÞds;

where Cð�Þ is the gamma function.

Definition 2.2 [30]. The Riemann–Liouville fractional order derivative of order a 2 Rþ of a function f given on the interval
½0;þ1Þ is defined by

R�L Daf ðtÞ ¼ 1
Cðn� aÞ

dn

dtn

Z t

0
ðt � sÞn�a�1f ðsÞds;

where a 2 ðn� 1;nÞ; n 2 N.

Definition 2.3 [30]. The Caputo fractional order derivative of order a 2 Rþ of a function f given on the interval ½0;þ1Þ is
defined by

Daf ðtÞ ¼ 1
Cðn� aÞ

Z t

0
ðt � sÞn�a�1f ðnÞðsÞds;

where a 2 ðn� 1;nÞ; n 2 N.
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