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a b s t r a c t

In this paper, dynamical system theory is applied to several types of fully nonlinear wave
equations. These equations can be reduced to planar polynomial differential systems by
transformation of variables. We treat these polynomial differential systems by phase space
analytical technique. The results of our study demonstrate that there exist close connection
between nilpotent singular points and compactons. Moreover, we find some new elliptic
function compactons instead of well-known trigonometric function compactons by analyzing
nilpotent points. Two new compactons induced by singular elliptic are also obtained.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the study of nonlinear wave equations and their solitary wave solutions are of great importance in
many areas of physics. Classically, the solitary wave solutions of nonlinear evolution equations are determined by analytic
formulae (typically a sech2 function or variants thereof) and serve as prototypical solutions that model physical localized
waves. In the case of integrable systems, the solitary waves interact cleanly, and are known as solitons. For many examples,
localized initial data ultimately breaks up into a finite collection of solitary wave solutions; this fact has been proved ana-
lytically for certain integrable equations such as the Korteweg-de Vries equation, and is observed numerically in many oth-
ers. The appearance of non-analytic solitary wave solutions to new classes of nonlinear wave equations, including peakons
[1–5], which have a corner at their crest, cuspons [2], having a cusped crest, and, compactons [6–13], which have compact
support, has vastly increased the menagerie of solutions appearing in model equations, both integrable and non-integrable.
The distinguishing feature of the systems admitting non-analytic solitary wave solutions is that, in contrast to the classical
nonlinear wave equations, they all include a nonlinear dispersion term, meaning that the highest order derivatives (charac-
terizing the dispersion relation) do not occur linearly in the system, but are typically multiplied by a function of the depen-
dent variable.

There are two important nonlinearly dispersive equations. One is the well-known Camassa–Holm equation

ut � uxxt þ 3uux ¼ 2uxuxx þ uuxxx; ð1:1Þ

which was proposed by Camassa and Holm [1] as a model equation for unidirectional nonlinear dispersive waves in shallow
water. This equation has attracted a lot of attention over the past decade due to its interesting mathematical properties. The
Camassa–Holm equation has been found to has peakons, cuspons and composite wave solutions [2]. The other is the Kðm;nÞ
equation

ut � ðumÞx þ ðunÞxxx ¼ 0; ð1:2Þ
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which was discovered by Rosenau and Hyman [6]. In particular, the K (2,2) equation support compacton solutions

uðx; tÞ ¼
4c
3 cos2ðx�ct

4 Þ; jx� ctj � 2p;
0; otherwise:

(
ð1:3Þ

The compactons represent traveling solitary wave solutions with compact support. That is, they vanish identically outside a
finite range. The compactons are also robust within their range of existence.

In general, Eq. (1.2) does not exhibit the usual energy conservation law. Therefore, Cooper et al. [12] proposed a
generalization of the KdV equation based on the first-order Lagrangian

Lðl;pÞ ¼
Z

1
2

/x/t þ
ð/xÞ

2

lðl� 1Þ � að/xÞ
pð/xxÞ

2

" #
dx; ð1:4Þ

which leads to the CSS equation

ut þ ul�2ux � p½up�1ðuxÞ2�x þ 2a½upux�xx ¼ 0: ð1:5Þ

In particular, if p ¼ 1, l ¼ 3 and a ¼ 1
2, then the CSS equation has also trigonometric function compactons

uðx; tÞ ¼
3c cos2ð 1

2
ffiffi
3
p ðx� ctÞÞ; jx� ctj 6

ffiffiffi
3
p

p;
0; otherwise:

(
ð1:6Þ

Recently, Mihaila et al. [14,15] studied the numerical stability of single compactons of the Kðm;nÞ equation and the CSS
equation and their pairwise interactions by using Padé approximant method

In this paper, we consider the following nonlinear wave equation

ut þ ðAðuÞÞx þ luxxt ¼ ½Bðu;uxÞu2
x þ Cðu;uxÞuxx�x: ð1:7Þ

where l is a constant. Some special cases of (1.1) have appeared in the literature.

(1) When l ¼ 0, AðuÞ ¼ u2, Bðu;uxÞ ¼ �2 and Cðu;uxÞ ¼ �2u, then Eq. (1.7) becomes the Kð2;2Þ equation [6]

ut þ ðu2Þx þ ðu2Þxxx ¼ 0: ð1:8Þ

(2) When l ¼ 0, AðuÞ ¼ u3, Bðu;uxÞ ¼ �2 and Cðu;uxÞ ¼ �2u, then Eq. (1.7) becomes the Kð3;2Þ equation [6]

ut þ ðu3Þx þ ðu2Þxxx ¼ 0: ð1:9Þ

(3) When l ¼ 0;AðuÞ ¼ u3;Bðu;uxÞ ¼ 1 and Cðu;uxÞ ¼ �u, then Eq. (1.7) is the sinh-Gordon equation [16]

ut þ 3u2ux � uxuxx þ uuxxx ¼ 0: ð1:10Þ

(4) When l ¼ 1;AðuÞ ¼ a� 1
2 u3;Bðu;uxÞ ¼ 1

2 u and Cðu; uxÞ ¼ 1
2 ðu2 þ u2

x Þ, then Eq. (1.7) is changed to the Olver–Rosenau
equation [7,17]

mt ¼ aux þ
1
2
½ðu2 þ u2

x Þm�x; m ¼ uþ uxx: ð1:11Þ

The paper is organized as follows. In Section 2, we reduce Eq. (1.7) to planar polynomial differential system by transforma-
tion of variables and introduce nilpotent singular points of vector field. In Section 3, we find some new compactons by phase
space analysis of nilpotent points. A short conclusion is given in Section 4.

2. Vector fields and nilpotent points

A nonlinear evolution equation is often called quasilinear when the dispersive term of it is linear. All quasilinear equa-
tions can easily be treated by the plane polynomial differential dynamical systems theory. For example, the change of
variable

uðx; tÞ ¼ uðx� ctÞ ¼ uðnÞ ð2:1Þ

followed by an integration over n converts the quasilinear KdV equation

ut þ auux þ cuxxx ¼ 0 ð2:2Þ

with parameters a and c, to an ordinary nonlinear differential equation

d2u
dn2 ¼

c
c
u� a

2c
u2: ð2:3Þ
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