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a b s t r a c t

In this paper we propose a version of Newton method for finding zeros of a quaternion
function of a quaternion variable, based on the concept of quaternion radial derivative.
Several numerical examples involving elementary functions are presented.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Since 1928 Fueter, one of the founders of quaternion analysis [1,2], tried to develop a function theory to generalize the
theory of holomorphic functions of one complex variable, by considering quaternion valued functions of a quaternion var-
iable. Nowadays, this well known and developed theory is recognized as a powerful tool for modeling and solving problems
in both theoretical and applied mathematics. For a survey on quaternion analysis and a list of references we refer to the book
[3]; a historical perspective of the subject and several applications can be found in [4].

In this work we revisit the classical Newton method for finding roots (or zeros) of a complex function and propose a
quaternion analogue, based on the concept and properties of quaternion radially holomorphic functions. We show that
for a certain class of functions (including simple polynomials and other elementary functions) this method produces the
same sequence as the classical Newton method for vector valued functions. In this way, we can obtain, with less computa-
tional effort, local quadratic convergence for a class of quaternion functions.

This idea was already considered by Janovská and Opfer in [5], where the authors formally adapted, for the first time,
Newton method for finding roots of Hamilton quaternions, by considering the quaternion equation xn � a ¼ 0. More recently,
Kalantari in [6], using algebraic-combinatorial arguments, proposed a Newton method for finding roots of special quaternion
polynomials. Working in the framework of quaternion analysis, we can provide a motivation for the techniques used in those
works and simultaneously extend the applicability of the method.

The paper is organized as follows. In Section 2 we introduce the basic notations and the results that are needed for our
work in Section 3.

Section 3 contains the main results of the paper. Here, by making use of the theory given in Section 2, and after estab-
lishing new properties on the radial derivative of a special class of functions, we propose a Newton method in the framework
of quaternion analysis.

Finally, in Section 4 several numerical examples illustrating the applicability of the aforementioned methods are presented.

2. Quaternion analysis

We start by first recalling some basic results concerning Hamilton quaternion algebra H, which can be found in classic
books on this subject. For results concerning quaternion analysis we refer to [7,8,3].
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Let f1; i; j;kg be an orthonormal basis of the Euclidean vector space R4 with a product given according to the multiplica-
tion rules

i2 ¼ j2 ¼ k2 ¼ �1; ij ¼ �ji ¼ k:

This non-commutative product generates the well known algebra of real quaternions H. The real vector space R4 will be
embedded in H by identifying the element x ¼ ðx0; x1; x2; x3Þ 2 R4 (or the column vector in R4�1; x ¼ ðx0 x1 x2 x3ÞT ) with
the element x ¼ x0 þ x1iþ x2jþ x3k 2 H. Throughout this paper, we will also use the symbol x to represent an element in
R4, whenever we need to distinguish the structure of H from R4.

The real or scalar part of a quaternion x ¼ x0 þ x1iþ x2jþ x3k is denoted by Sc x and is equal to x0, the vector part of x is
x :¼ x1iþ x2jþ x3k and therefore x can be written as x ¼ x0 þ x. The conjugate of x is x :¼ x0 � x1i� x2j� x3k ¼ x0 � x. The
mapping x#x is called conjugation and has the property xy ¼ y x, for all x; y 2 H. The norm jxj of x is defined by
jxj2 ¼ xx ¼ xx and coincides with the corresponding Euclidean norm of x, as a vector in R4. It follows that jxyj ¼ jxjjyj and each
non-zero x 2 H has an inverse given by x�1 ¼ x

jxj2
. Moreover, jxj�1 ¼ jx�1j.

In this work we are going to consider also the representation of the quaternion x ¼ x0 þ x1iþ x2jþ x3k by means of the
real matrix in R4�4

Lx :¼

x0 �x1 �x2 �x3

x1 x0 �x3 x2

x2 x3 x0 �x1

x3 �x2 x1 x0

0
BBB@

1
CCCA: ð1Þ

This representation is called matrix left representation of x and can be associated with the product of quaternions

xy ¼ ðx0 þ x1iþ x2jþ x3kÞðy0 þ y1iþ y2jþ y3kÞ ¼ ðx0y0 � x1y1 � x2y2 � x3y3Þ þ ðx1y0 þ x0y1 � x3y2 þ x2y3Þi
þ ðx2y0 þ x3y1 þ x0y2 � x1y3Þjþ ðx3y0 � x2y1 þ x1y2 þ x0y3Þk; ð2Þ

through the identification

z ¼ xy ! z ¼ Lxy; ð3Þ

where y is the (column) vector in R4 corresponding to the quaternion y.
Any arbitrary nonreal quaternion x can also be written in the so-called complex-like form

x ¼ x0 þxðxÞjxj; ð4Þ

where

xðxÞ :¼ x
jxj

belongs to the unit sphere in R3. Since xðxÞ ¼ xðxÞ ¼ �xðxÞ, it follows immediately that xðxÞ2 ¼ �xðxÞxðxÞ ¼
�jxðxÞj2 ¼ �1. In other words, we can consider that x behaves like the imaginary unit and therefore the complex-like form
(4) is similar to the complex form aþ ib. We use the convention xðxÞ :¼ 0, for real quaternions x. The following properties
play an important role in the present work.

Proposition 1. If x ¼ x0 þ x1iþ x2jþ x3k and y ¼ y0 þ y1iþ y2jþ y3k are quaternions, the following statements are equivalent:

(i) xy ¼ yx;
(ii) x1y2 ¼ x2y1 and x1y3 ¼ x3y1 and x2y3 ¼ x3y2;

(iii) xðxÞxðyÞ ¼ xðyÞxðxÞ;
(iv) xðxÞ ¼ �xðyÞ.

Proof. The equivalence between the first three statements follows at once from the multiplication rules (cf. (2)). If
xðxÞ ¼ �xðyÞ, clearly xðxÞxðyÞ ¼ �1 ¼ xðyÞxðxÞ and we conclude that (iv) implies (iii).

Now, we prove that (ii) implies (iv) for the case of nonreal quaternions. If y is nonreal, we can assume that, for example,
y1 – 0. Using (ii) one can write x2 ¼ x1

y2
y1

and x3 ¼ x1
y3
y1

and this, in turn, implies that x ¼ x1iþ x2jþ x3k ¼ ðy1iþ y2jþ y3kÞ x1
y1

.

This means that jxj ¼ jyj jx1 j
jy1 j

and the result xðxÞ ¼ x
jxj ¼

y
jyj

x1jy1 j
jx1 jy1

¼ �xðyÞ follows. h

Corollary 1. If x and y are quaternions such that xðxÞ and xðyÞ commute then:

(i) xy ¼ yx;
(ii) xy�1 ¼ y�1x.
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