Factor-set of binary matrices and Fibonacci numbers

Krasimir Yordzhev

Faculty of Mathematics and Natural Sciences, South-West University, 2700 Blagoevgrad, Bulgaria

ARTICLE INFO

Keywords:

Fibonacci number
Binary matrix
Equivalence relation
Factor-set

Abstract

The article discusses the set of square $n \times n$ binary matrices with the same number of 1 's in each row and each column. An equivalence relation on this set is introduced. Each binary matrix is represented using ordered n-tuples of natural numbers. We are looking for a formula which calculates the number of elements of each factor-set by the introduced equivalence relation. We show a relationship between some particular values of the parameters and the Fibonacci sequence.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A binary (or boolean, or (0,1)-matrix) is a matrix whose all elements belong to the set $\mathcal{B}=\{0,1\}$. With \mathcal{B}_{n} we will denote the set of all $n \times n$ binary matrices.

Let n and k be integers such that $0 \leqslant k \leqslant n, n \geqslant 2$. We let Λ_{n}^{k} denote the set of all $n \times n$ binary matrices in each row and each column of which there are exactly k in number 1 's. Let us denote with $\lambda(n, k)=\left|\Lambda_{n}^{k}\right|$ the number of all elements of Λ_{n}^{k}.

There is not any known formula to calculate the $\lambda(n, k)$ for all n and k. There are formulas for the calculation of the function $\lambda(n, k)$ for each n for relatively small values of k, more specifically, for $k=1, k=2$ and $k=3$. We do not know any formula to calculate the function $\lambda(n, k)$ for $k>3$ and for all positive integer n.

It is easy to prove the following well-known formula

$$
\lambda(n, 1)=n!
$$

The following formula

$$
\lambda(n, 2)=\sum_{2 x_{2}+3 x_{3}+\cdots+n x_{n}=n} \frac{(n!)^{2}}{\prod_{r=2}^{n} x_{r}!(2 r)^{x_{r}}}
$$

is well known [8].
One of the first recursive formulas for the calculation of $\lambda(n, 2)$ appeared in [1] (see also [4, p. 763]).

$$
\left\lvert\, \begin{aligned}
& \lambda(n, 2)=\frac{1}{2} n(n-1)^{2}\left[(2 n-3) \lambda(n-2,2)+(n-2)^{2} \lambda(n-3,2)\right] \quad \text { for } n \geqslant 4, \\
& \lambda(1,2)=0, \quad \lambda(2,2)=1, \quad \lambda(3,2)=6 .
\end{aligned}\right.
$$

Another recursive formula for the calculation of $\lambda(n, 2)$ occurs in [3].

$$
\left\lvert\, \begin{aligned}
& \lambda(n, 2)=(n-1) n \lambda(n-1,2)+\frac{(n-1)^{2} n}{2} \lambda(n-2,2) \quad \text { for } \quad n \geqslant 3, \\
& \lambda(1,2)=0, \quad \lambda(2,2)=1 .
\end{aligned}\right.
$$

[^0]The next recursive system is to calculate $\lambda(n, 2)$.

$$
\left\lvert\, \begin{aligned}
& \lambda(n+1,2)=n(2 n-1) \lambda(n, 2)+n^{2} \lambda(n-1,2)-\pi(n+1) ; n \geqslant 2, \\
& \pi(n+1)=\frac{n^{2}(n-1)^{2}}{4}\left[8(n-2)(n-3) \lambda(n-2,2)+(n-2)^{2} \lambda(n-3,2)-4 \pi(n-1)\right] ; n \geqslant 4, \\
& \lambda(1,2)=0, \quad \lambda(2,2)=1, \quad \pi(1)=\pi(2)=\pi(3)=0, \quad \pi(4)=9,
\end{aligned}\right.
$$

where $\pi(n)$ identifies the number of a special class of Λ_{n}^{2}-matrices [9].
The following formula is an explicit form for the calculation of $\lambda(n, 3)$.

$$
\lambda(n, 3)=\frac{n!^{2}}{6^{n}} \sum \frac{(-1)^{\beta}(\beta+3 \gamma)!2^{\alpha} 3^{\beta}}{\alpha!\beta!\gamma!^{2} 6^{\gamma}}
$$

where the sum is done as regards all $\frac{(n+2)(n+1)}{2}$ solutions in nonnegative integers of the equation $\alpha+\beta+\gamma=n$ [7]. As it is noted in [6], this formula does not give us good opportunities to study behavior of $\lambda(n, 3)$.

Let $A, B \in \Lambda_{n}^{k}$. We will say that $A \sim B$, if A is obtained from B by moving some rows and/or columns. Obviously, the relation defined like that is an equivalence relation. We denote with

$$
\begin{equation*}
\mu(n, k)=\left|\Lambda_{n / \sim}^{k}\right|, \tag{1}
\end{equation*}
$$

the number of equivalence classes on the above defined relation.
Problem 1. Find $\mu(n, k)$ for given integers n and $k, 1 \leqslant k<n$.
The task of finding the cardinal number $\mu(n, k)$ of the factor set $\left|\Lambda_{n / \sim}^{k}\right|$ for all integers n and $k, 1 \leqslant k \leqslant n$ is an open scientific problem. This is the subject of discussion in this article. We will prove that there is a relationship between some particular values of the parameters of $\mu(n, k)$ of and the Fibonacci sequence. Specifically, we will prove that if $k=n-2$ then $\mu(n, k)$ coincides with the Fibonacci numbers for all $n \in \mathbb{N}, n \geqslant 2$.

2. Canonical binary matrices

Let \mathbb{N} be the set of natural numbers and let

$$
\begin{equation*}
\mathcal{T}_{n}=\left\{\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \mid a_{i} \in \mathbb{N}, 0 \leqslant a_{i} \leqslant 2^{n}-1, i=1,2, \ldots, n\right\} . \tag{2}
\end{equation*}
$$

With " $<$ " we will be denoting the lexicographic orders in \mathcal{T}_{n}.
Let us consider the one-to-one correspondence

$$
\begin{equation*}
\varphi: \mathcal{B}_{n} \cong \mathcal{T}_{n} \tag{3}
\end{equation*}
$$

which is based on the binary presentation of the natural numbers. If $A \in \mathcal{B}_{n}$ and $\varphi(A)=\left\langle a_{1}, a_{2}, \ldots a_{n}\right\rangle$, then i th row of A is integer a_{i} written in binary notation.

Definition 1. Let $A \in \mathcal{B}_{n}$. With $r(A)$ we will be denoting the ordered n-tuple $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, where $x_{i} \in \mathbb{N}, 0 \leqslant x_{i} \leqslant$ $2^{n}-1, i=1,2, \ldots n$ and x_{i} is the natural number written in a binary notation with the help of the i th row of A. Likewise with $c(A)$ we are denoting the ordered n-tuple $\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$, where $0 \leqslant y_{j} \leqslant 2^{n}-1, j=1,2, \ldots n$, and y_{j} is a natural number written in binary notation with the help of the j th column of A.

Lemma 1. Let $A \in \mathcal{B}_{n}, r(A)=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, c(A)=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ and let $1 \leqslant u<v \leqslant n$.
(a) Let $x_{u}>x_{v}$ and let A^{\prime} be obtained from A by changing the locations of rows with the number u and v, while the remaining rows stay in their places. Then $c\left(A^{\prime}\right)<c(A)$.
(b) Let $y_{u}>y_{v}$ and let A^{\prime} be obtained from A by changing the locations of columns with the number u and v, while the remaining columns stay in their places. Then $r\left(A^{\prime}\right)<r(A)$.

Proof.

(a) It is easy to see that $r\left(A^{\prime}\right)<r(A)$. Let $A=\left[a_{i j}\right]_{n \times n}$, where $a_{i j} \in\{0,1\}, 1 \leqslant i, j \leqslant n$. Then the representation of x_{u} and x_{v} in binary notation be respectively as follows:

$$
\begin{aligned}
x_{u} & =a_{u 1} a_{u 2} \cdots a_{u n}, \\
x_{v} & =a_{v 1} a_{v 2} \cdots a_{v n} .
\end{aligned}
$$

https://daneshyari.com/en/article/4627926

Download Persian Version:
https://daneshyari.com/article/4627926

Daneshyari.com

[^0]: E-mail address: yordzhev@swu.bg

