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Keywords: In this work we develop an alternative numerical technique which allows to construct a
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Closed form numerical solutions lems with Dirichlet boundary conditions. The elliptic partial differential equation is
Explicit difference scheme approximated by a consistent explicit difference scheme and using a discrete separation

Discrete variable separated method
Discrete Sturm-Liouville problems
Consistency

of the variables method we determine a closed form solution of the two resulting discrete
boundary value problems with the separated variables, avoiding to have to solve large
algebraic systems. One of these boundary value problems is a discrete Sturm-Liouville
problem which guarantees the qualitative properties of the exact solution of elliptic prob-
lem. A constructive procedure for the computation of the numerical solution is given and
an illustrative example is included.
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1. Introduction

Elliptic partial differential equations arise usually from equilibrium or steady-state fluid flow and heat problems and their
solutions, in relation to the calculus of variations, frequently maximize or minimize an integral representing the energy of
the system. Exact solutions only exits for a few special cases with simple geometries and boundary conditions, or for sim-
plified constants coefficients equations, in which some of the more complicated physical phenomena are neglected. Fortu-
nately, numerical analysis in these equations can offer reliable solutions.

Apart from some techniques such as meshless methods [1,2] and those based on particular transformations used to solve
special problems [3,4], the most used are related mesh methods as the finite difference method [5-7], the finite-volume
method [8,9] and the finite element method [10,11].

In this paper we consider an explicit finite difference scheme for the following linear second-order homogeneous elliptic
problem with Dirichlet boundary conditions

r(x)uy (x,y) + [Pu(x, y)], —qx)u(x,y) =0, a<x<b, c<y<d, (1)
u@ay)=hy), yelcd, (2)
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where r(x), p(x), q(x), f1(¥), f2(X), g,(¥), g (x) are continuous real functions and

rx)>0, px)>0, q(x)>0, xelab] }

6
p(x) is differentiable ®

Discretization of the partial differential equation (pde) together with the boundary conditions give rise to an algebraic
discretized problem where the unknowns are the numerical values of the solution at the mesh points. This algebraic problem
can be compactly written as a linear system Au = b, where the entries of the matrix A and the vector b involve the structure
of the pde and the boundary value conditions. A detailed study of this algebraic treatment may be found in [12,13, Chapter
5].

An alternative approach to solve the discretized problem as a mere algebraic system, that at the same time tries to pre-
serve the properties of the continuous eigenfunction method for the continuous problem [14], is based on the construction of
a discrete separation of the variables method for the resulting discretized problem. This method has been successfully used
in [15-17] for solving parabolic and hyperbolic problems, and it is considered here for the solution of the elliptic problem
(1)-(5) providing a closed form numerical solution.

For the study of the elliptic problem (1)-(5) we decompose the boundary conditions (2)-(5) in the four following cases:

u@y) = 0,  yelcd u@y) = 0, y€lcd
U)waw =0, yeled m)waw = 0, y€lc.d|
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u(x,d) = 0, X € [a, b u(x,d) = g,(x), x¢€lab]
u@ay) = fiy), yelcd u@y) = 0, y€le.d
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Potential advantages of the proposed method are that being explicit and based on a discrete eigenfunction method, the
properties of the exact theoretical solution are preserved by the numerical approximation allowing that with just a few
nodes the approximation is very good together with a low computational cost.

This paper is organized as follow. Section 2 deals with the discretization of Eq. (1) and the study of the consistency of the
constructed numerical scheme. In Section 3 we construct numerical solutions considering cases I and II by means of a dis-
crete separation of variables method. The similarity of the first two homogeneous boundary conditions allows to use the
same discrete Sturm-Liouville problem in both cases whose eigenfunctions are determined throughout the eigenpairs of
an algebraic eigenvalue problem. Cases Ill and IV are treated in Section 4 because both problems have the same last two
homogeneous boundary conditions and the underlying discrete Sturm-Liouville problem. In these cases the eigenfunctions
are analytically determined. Section 5 includes a constructive numerical algorithm of the original problem. We also include
an illustrative numerical example. Section 6 summarizes the main conclusions of the paper.

2. Discretization and consistency

Let us begin this section by subdividing the plane domain [a, b] x [c,d] into a rectangular mesh of equal rectangles of sides
Ax =h, Ay = k. Let N and M be natural numbers and let o be positive real number such that

b—a d-—c k
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Then a typical mesh point (x;,y;) verifies

xi=a+ih, 0<i<N+1,
yi=c+jk, 0<j<M+1.
Let us denote u(x;,y;), r(x;), p(xi), q(xi), f1(¥;), f2(%i), & (¥;) and g, (x;), by U(Q.j), r(i), p(i), q(i), f1(), f»(i). & () and
g, (i) respectively. We approximate the derivatives of elliptic Eq. (1) by the following finite differences of second-order
(i,j+1)-2U(,j) +UG,j—1)
K

pMHUG+1,j) —UGEH)] = pi - UG — Ui - 1,j)]
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obtaining the explicit difference scheme
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