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a b s t r a c t

In this paper, Bernstein polynomials method is proposed for the numerical solution of a
class of variable order fractional linear cable equation. In this paper, we adopted Bernstein
polynomials basis defined on the interval ½0;R� to solve the equations defined on the
section X ¼ ½0;X� � ½0; T�. The main characteristic behind this approach in this paper is that
we derive two kinds of operational matrixes of Bernstein polynomials. With the
operational matrixes, the initial equation is transformed into the products of several
dependent matrixes which can also be viewed as the system of linear equations after
dispersing the variable. By solving the linear system of algebraic equations, the numerical
solutions are acquired. Only a small number of Bernstein polynomials are needed to obtain
a satisfactory result. Numerical examples are provided to show that the method is compu-
tationally efficient.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

As one of the most fundamental equations, the cable equation successfully modeled so many complex problems appear-
ing in neuronal dynamics. From the Rall’s pioneering work [1], in recent years, more and more researchers have focused on
the study of neuronal dynamics [2–15]. For example, recently, Langlands et al. [8] have proposed and investigated the fol-
lowing fractional cable equation which can be viewed as macroscopic models for electrodiffusion of ions in nerve cells when
molecular diffusion is anomalous subdiffusion due to binding, crowding or trapping

@uðx; tÞ
@t

¼ D1�r1
t

@2uðx; tÞ
@x2 � lD1�r2

t uðx; tÞ þ f ðx; tÞ; ð1Þ

where 0 < r1; r2 < 1, l > 0 is a constant, here D1�r
t gðx; tÞ is the variable-order Caputo fractional partial derivative of order

1� r.
In this paper, we consider the following variable order linear cable equation
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with the initial and boundary conditions
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uðx;0Þ ¼ gðxÞ; 0 � x � X;

uð0; tÞ ¼ /ðtÞ; uð1; tÞ ¼ uðtÞ; 0 � t � T;
ð3Þ

where 0 < rð1Þmin � r1ðx; tÞ � rð1Þmax < 1; and 0 < rð2Þmin � r2ðx; tÞ � rð2Þmax < 1, l > 0 is a constant here D1�rðx;tÞ
t gðx; tÞ is the variable-

order Caputo fractional partial derivative of order 1� rðx; tÞ.
As is known to all, many numerical methods using different kinds of fractional derivative operators for solving different

types of fractional differential equations have been proposed. The most commonly used ones are Adomian decomposition
method (ADM) [16,17], Variational iteration method (VIM) [18], generalized differential transform method (GDTM)
[19,20], generalized block pulse operational matrix method [21] and wavelet method [22,23]. Also there are some novel
methods, such as the tau approach based on the shifted Legendre-tau idea [24,25] and the homotopy analysis method [26].

Since the kernel of the variable order operators is too complex for having a variable-exponent, the numerical solutions of
variable order fractional differential equations are quite difficult to obtain, and have not attracted much attention. Fig. 1
Therefore, the development of numerical techniques to solve variable order fractional differential equations has not taken
off. Coimbra [27] employed a consistent approximation with first-order accurate for the solution of variable order differen-
tial equations. Soon [28] proposed a second-order Runge–Kutta method which is consisting of an explicit Euler predictor step
followed by an implicit Euler corrector step to numerically integrate the variable order differential equation. Sun et al. [29]
introduced a classification of the variable-order fractional diffusion models to the diffusion curve of the variable order dif-
ferential operator model based on the possible physical origins, which motivated the variable-order and developed the
Crank–Nicholson scheme. Lin et al. [30] studied the stability and the convergence of an explicit finite-difference approxima-
tion for the variable-order fractional diffusion equation with a nonlinear source term. Fig. 2 Zhuang et al. [31] obtained expli-
cit and implicit Euler approximations for the variable-order fractional advection–diffusion nonlinear equation. Chen et al.
[32] studied a variable-order anomalous subdiffusion equation and employed two numerical schemes, one with fourth order
spatial accuracy and first order temporal accuracy, the other with fourth order spatial accuracy and second order temporal
accuracy. However, as far as we know, no one had attempted to seek the numerical solution of the variable order fractional
equations.

So in this paper, we introduce the Bernstein polynomials to seek the numerical solution of the variable order fractional
linear cable equation. With the simple structure and perfect properties, the Bernstein polynomials play an important role in
various areas of engineering and mathematics. Those polynomials have been widely used in solving fractional integral equa-
tions and fractional differential equations [33–42]. In recent years, various polynomials such as Taylor series [43,44] and
Legendre polynomials [45–47] have been applied to seek the numerical solution of integral, differential equations, fractional
integral equations and fractional differential equations.

The reminder of the paper is organized as follows: Sections 2 and 3 are preparative, the definitions and properties of the
variable order fractional order integrals and derivatives and Bernstein polynomials are given in Sections 2 and 3. In Section 4,
Fig. 3 the two kinds of operational matrixes of Bernstein polynomials are derived and we applied the operational matrixes to
solve the equation as given at beginning. In Section 5, we present some numerical examples to illustrative the method and to
demonstrate efficiency of the method. We end the paper with a few concluding remarks in Section 6.

Fig. 1. The absolute error for Example 1 when n ¼ 3.

330 Y. Chen et al. / Applied Mathematics and Computation 238 (2014) 329–341



Download English Version:

https://daneshyari.com/en/article/4627959

Download Persian Version:

https://daneshyari.com/article/4627959

Daneshyari.com

https://daneshyari.com/en/article/4627959
https://daneshyari.com/article/4627959
https://daneshyari.com

