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a b s t r a c t

In this paper, we study the set of cell matrices and its relationship with the cone of positive
semidefinite diagonal matrices. The set forms a convex polyhedral cone in the linear space
of symmetric matrices. We describe the faces of the cone and its polar. We also provide a
new linear inequality associated with cell matrices.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A Euclidean distance matrix (EDM) is a matrix D ¼ ðdijÞ for which there exist n points x1; x2; . . . ; xn in some Euclidean space
Rr such that

dij ¼ kxi � xjk2
2; ð1:1Þ

where k � k2 is the usual Euclidean norm. An EDM D is called spherical if the points lie on a sphere in Rr . (See, for example,
[9,1].) During the last two decades, various kinds of subsets of EDMs with particular properties have been studied by several
authors. The set of spherical EDMs is a typical example. The set of cell matrices, which is introduced lately by Jaklic̆ and
Modic [6] is also an interesting one. As is stated in their paper, the notion of cell matrix is applied to many scientific areas.
In this paper, we investigate the structure of the set of cell matrices as a polyhedral cone. We also identify its extreme direc-
tions and faces.

For this purpose, let us denote by Sn the linear space of symmetric matrices of order n. The Frobenius inner product in Sn

will be denoted by hA;BiF ¼ traceðAtBÞ. The sets of positive semidefinite matrices and hollow symmetric matrices (i.e., sym-
metric matrices with only zero diagonal entries) are subsets of Sn, which will be denoted by Xn and Hn, respectively. For a
given vector x ¼ ðx1; x2; . . . ; xnÞt 2 Rn; diagðxÞ stands for the diagonal matrix with diagonal entries equal to those of x:

diagðxÞ ¼
x1 0

. .
.

0 xn

0
BB@

1
CCA: ð1:2Þ

We will denote by ei ði ¼ 1;2; . . . ;nÞ the canonical vectors, and by e the vector of all ones.
The set Kn of EDMs forms a closed convex cone in Sn. The set Kn is parametrized by the linear transformation j on Xn, that

is,
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Kn ¼ jðXnÞ; ð1:3Þ

where jðBÞ with B ¼ ðbijÞ 2 Xn is defined as,

jðBÞ ¼ bet þ ebt � 2B with b ¼ ðb11; b22; . . . ; bnnÞt 2 Rn: ð1:4Þ

See Gower [4], Critchley [2] and Johnson and Tarazaga [5]. If j is restricted to a maximal face of Xn, given by

XnðsÞ ¼ fX 2 Xn jXs ¼ 0g with ste ¼ 1; ð1:5Þ

then the function j : XnðsÞ ! Kn is one to one, and its inverse function ss : Kn ! XnðsÞ is given by

ssðDÞ ¼ �
1
2

I � est
� �

D I � set
� �

: ð1:6Þ

Here in general, a face F of a cone C is any subset of C such that for each a 2 F, every decomposition a ¼ bþ c with b; c 2 C
implies b; c 2 F. If the dimension dimðFÞ of F is dimðCÞ � 1, then F is called a maximal face (or a facet). On the other hand, one-
dimensional face is called an extreme ray. (See, for example, Chapter 2 of [3].) We call the direction of an extreme ray an
extreme direction. Every face XnðsÞ with ste ¼ 1 corresponds to a different location of the origin of coordinates (for more
details see Section 2 of [5]). The case in which s ¼ e=n is of particular importance. In this case we write s instead of se=n. Need-
less to say, the two functions s : Kn ! XnðeÞ and j : XnðeÞ ! Kn are mutually inverse. A matrix in XnðeÞ is called centered,
since the centroid of the corresponding configuration coincides with the origin.

Given an EDM D, we define its embedding dimension as the minimal dimension for which a configuration of the points
that generate D can lie. It is well-known that the embedding dimension is the same as the rank of the matrix ssðDÞ as long as
ste ¼ 1.

Let Rn
þ be the set of n-dimensional vectors whose entries are nonnegative. For a 2 Rn

þ, a cell matrix DðaÞ is defined by

ðDðaÞÞij ¼
0 if j ¼ i;

ai þ aj if j – i:

�
ð1:7Þ

We will denote the set of cell matrices by Cn:

Cn ¼ fDðaÞ ja 2 Rn
þg: ð1:8Þ

The organization of the paper is as follows. Section 2 gives a characterization of cell matrix via the transformation j. It is
shown that the set Cn forms a convex polyhedral cone. Sections 3 and 4 are devoted to describing the faces and the polar
cone of Cn, respectively. In Section 5, we derive an interesting implication of cell matrix through a linear inequality.

2. Cell matrices structure

In this section we show a natural way to generate the cell matrices, by which a number of interesting properties can be
derived. Let Dn be the set of nonnegative diagonal matrices:

Dn ¼ B ¼ diagðbÞ jb ¼ ðb1; . . . ; bnÞt 2 Rn
þ

n o
: ð2:1Þ

We begin with the following basic result.

Theorem 2.1. A matrix D is a cell matrix if and only if D can be written as D ¼ jðBÞ for some B 2 Dn. That is,

Cn ¼ jðDnÞ: ð2:2Þ

Proof. By the definition of cell matrix, D 2 Cn if and only if there exists a nonnegative vector a 2 Rn
þ such that D ¼ DðaÞ,

where the function Dð�Þ is defined in (1.7). Since (1.7) can be rewritten as

ðDðaÞÞij ¼
ai þ aj � 2ai if j ¼ i;

ai þ aj if j – i;

�
ð2:3Þ

we see that the condition (1.7) is equivalent to D ¼ jðdiagðaÞÞ for some a 2 Rn
þ, which is in turn equivalent to D ¼ jðBÞ for

some B 2 Dn. This completes the proof. h

By replacing Rn
þ with Rn in the proof of the above theorem, we can see that the above theorem remains valid even if the

two sets Cn and Dn are generalized to ~Cn ¼ fDðaÞ ja 2 Rng and ~Dn ¼ fB ¼ diagðbÞ jb 2 Rng, respectively. That is,

~Cn ¼ jð~DnÞ: ð2:4Þ

We use this fact in the next section.
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