
Error analysis for moving least squares approximation in 2D
space

Hongping Ren ⇑, Kaiyan Pei, Liping Wang
School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China

a r t i c l e i n f o

Keywords:
Meshless methods
Moving least squares (MLS) approximation
Weight function
Error estimates
Consistency conditions
Interpolating element-free Galerkin (IEFG)
method

a b s t r a c t

In this paper, we provide a theoretical analysis of the moving least squares (MLS) approx-
imation, which belongs to the family of meshless methods. First the non matrix form of the
MLS shape function in two-dimensional space is obtained by using consistency conditions.
The error estimates for MLS approximation in Sobolev space are presented when
uðx; yÞ 2 Cmþ1ðXÞ, and uðx; yÞ 2Wmþ1;qðXÞ, respectively. We establish the error estimates
for interpolating element-free Galerkin (IEFG) method when it is used for solving Poisson’s
equation. The error bound is related to the radii of the weight functions and the bound of
the norm of derivatives of shape functions. Three numerical examples are selected to con-
firm our analysis.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, meshless methods have been developed as alternative numerical approaches in effort to eliminate known
shortcomings of the mesh-based methods [1]. The main advantage of these methods is to approximate the unknowns by a
linear combination of shape functions. Shape functions are based on a set of nodes and a certain weight function with a local
support associated with each of these nodes. Therefore, they can solve many engineering problems that are not suited to
conventional computational methods [2–8].

Meshless methods contain two steps: construction of shape functions and their derivatives, and meshless discretization
of governing partial differential equations. Many kinds of meshless methods have been developed, such as smoothed particle
hydrodynamics (SPH) [9], diffuse element method (DEM) [10], element-free Galerkin (EFG) method [11], reproducing kernel
particle method (RKPM) [12], finite point method (FPM) [13], meshless local Petrov–Galerkin (MLPG) method [14], point col-
location method (PCM) [15], radial basis functions (RBF) [16], meshless finite element method (MFEM) [17], complex vari-
able meshless method (CVMM) [18], boundary node method (BNM) [19], local boundary integral equation (LBIE) method
[20], boundary radial point interpolation method (BRPIM) [21], and boundary element-free method (BEFM) [22].

Different kinds of techniques have been used for the construction of meshless shape functions. The moving least-squares
(MLS) approximation is one which is most widely used [23]. MLS approximation is a standard approach to find the best con-
tinuous function matching from a set of point values by minimizing the sum of the squares of the weighted residuals of all
data points, so the MLS approximation is able to obtain a very precise solution, now it is an important method to form the
shape function in meshless methods.
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Based on the MLS approximation, Belytschko et al. proposed the element-free Galerkin (EFG) method [11]. Mukherjee
made an improvement on the MLS approximation in order to deal with boundary conditions conveniently in the EFG method
[24]. Dai discussed an improved local boundary integral equation method for two-dimensional potential problems based on
the improved MLS approximation [25].

A disadvantage of the MLS approximation is that the final algebraic equations system is sometimes ill-conditioned. Thus,
sometimes we cannot obtain a satisfying solution, then improved MLS approximation was presented by Liew et al. [26]. In
the improved MLS approximation, the algebraic equation system is not ill-conditioned, and can be solved without the
inverse matrix. Combining the boundary integral equation method with the improved MLS approximation, the boundary
element-free method was presented to solve elasticity, elastodynamics, and fracture [27–31]. The improved element-free
Galerkin method based on the improved MLS approximation was discussed by Zhang et al. for the biological population
problems and geometrically nonlinear analysis [32–40].

The complex variable moving least squares (CVMLS) approximation, which is an approximation of a vector function, has
been developed by Liew et al. [41], and the corresponding complex variable meshless methods are presented [8,42–44]. In
the CVMLS approximation the trial function of a two-dimensional problem is formed with a one-dimensional basis function,
the number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the MLS approx-
imation. Combining the CVMLS approximation with the EFG method, the complex variable element-free Galerkin (CVEFG)
method for two-dimensional elasticity and elastoplasticity problems were presented [45,46]. Combining the CVMLS approx-
imation with boundary integral equation method, the complex variable boundary element-free method for two-dimensional
elastodynamics problems was presented [47]. Ren et al. discussed complex variable interpolating moving least squares
methed [48].

Since the shape function of the MLS approximation does not have the properties of Kronecker Delta function, the mesh-
less method based on it must use other methods to impose essential boundary conditions, which makes the Galerkin weak
form more complicated, therefore, it is important to study the interpolating MLS method. Based on the MLS approximation,
Lancaster proposed interpolating moving least squares (IMLS) method [23]. By using the IMLS method, Kaljevic presented
the improved EFG method in which the essential boundary condition can be applied directly [49]. An improved interpolating
EFG method with nonsingular weight function was discussed by Wang et al. [50]. Ren et al. proposed an improved IMLS
method, and based on it the interpolating EFG method and the improved boundary element-free method are presented
[51–53].

In recent literature, the researches of the mathematical theory of meshless methods are much less than those of
their applications. Liu presented MLS reproducing kernel methods and its convergence [54]. Wendland obtained error
estimates for MLS approximation by using norming sets [55]. Armentano presented error estimates for MLS
approximation in Sobolev spaces [56]. Zuppa obtained error estimates for derivatives of shape function by the
condition numbers of the star of nodes in the normal equation [57]. Error estimate of the reproducing kernel particle
method was established by Han [58]. Cheng carried out an error estimation and convergence analysis of the finite
point method [59,60]. Li obtained error estimates for MLS approximation when nodes and weight functions satisfy
certain conditions [61]. Salehi presented the MLS radial reproducing kernel particle method and established the
convergence rate of the approximation [62].

In this paper, firstly the non matrix form of the MLS shape function in two-dimensional space is obtained by using con-
sistency conditions. The error estimates for MLS approximation in Sobolev space are presented. We establish the error esti-
mates for interpolating element-free Galerkin (IEFG) method when it is used for solving Poisson’s equation. Three numerical
examples are selected to confirm our analysis and to demonstrate the efficiency and accuracy of IEFG method.

2. Moving least squares approximation

In the MLS approximation, a function uðxÞ; ðx 2 DÞ is to be approximated, it is assumed that its values uI ¼ uðxIÞ,
ðI ¼ 1;2; . . . ;NÞ are given.

A approximating function of uðxÞ is

uhðxÞ ¼
Xm

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð1Þ

where piðxÞ are monomial basis functions, the unknown parameters aiðxÞ vary with x ði ¼ 1;2; . . . ;mÞ.
In two dimensional space, the basis functions are:
Linear basis:

pTðxÞ ¼ ð1; x; yÞ: ð2Þ

Quadratic basis:

pTðxÞ ¼ ð1; x; y; x2; xy; y2Þ: ð3Þ

We define a functional
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