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a b s t r a c t

This paper proposes a modified shuffled frog leaping (SFL) for solving parameter identifica-
tion problems. The SFL divides a population into several memeplexes and then improves
each memeplex in an evolutionary process. One of the main drawbacks of SFL is a limita-
tion in its number and variety of search moves. This modification concentrates to diversify
search moves of SFL by inserting a differential operator into evolutionary process of SFL.
Experiments are performed on parameter identification problems and the obtained results
are compared with some other algorithms reported in the literature. Practical experiences
show that the proposed algorithm is very effective and robust so that it produces similar
and promising results over repeated runs. The obtained results demonstrate a significantly
better performance of our proposed algorithm than other revolutionary algorithms
reported in the literature.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

One of classical problems in control engineering is system identification. The system identification is performed in four
stages: (i) Data acquisition which is the process of sampling signals that measure real world physical phenomenon. (ii)
Model structure selection which is based upon an understanding of both the identification procedure, and the system to
be identified or in the other words understanding of the physical systems. (iii) Parameter estimation which value of some
parameters related to be chose model affects the distribution of the measured data. An estimator attempts to approximate
the unknown parameters using the measurements. (iv) Model validity tests which state that how well the model represents
the patterns seen in real-world applications and how well the data used reflect current experiment and practice. In the cur-
rent research we focus upon parameter estimation stage. So the model structure is definite and the employed approach must
estimate parameters of model from a set of possibly noisy input–output data.

Historically, parameters estimation has been primarily treated by the least-squares method. It has been successfully used
to estimate the parameters in static and dynamical systems, respectively. But, the least-squares method is only suitable for
the model structure of system having the property of being linear in the parameters. Once the form of model structure is not
linear in the parameters, this approach may be invalid. Heuristic algorithms especially with stochastic search techniques
seem to be a more hopeful approach and provide a powerful means to solve this problem. They seem to be a promising alter-
native to traditional techniques, since (i) the objective functions gradient is not required, (ii) they are not sensitive to starting
point, and (iii) they usually do not get stuck into so called local optima [1]. Recently, Evolutionary algorithms (EAs)have
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attracted wide research attention. EAs are a broad class of stochastic optimization algorithms inspired by biology and, in par-
ticular, by those biological processes that allow populations of organisms to adapt to their surrounding environments:
genetic inheritance and survival of the fittest. EAs have a prominent advantage over other types of numerical methods. They
only require information about the objective function itself, which can be either explicit or implicit. Other accessory prop-
erties such as differentiability or continuity are not necessary. As such, they are more flexible in dealing with a wide spec-
trum of problems [2]. One of recently proposed EAs introduced by Eusuff and Lansey [3] is shuffled frog leaping (SFL)
algorithm. It was inspired from social researching of frogs for food resources. The SFL was derived by combining the concepts
of shuffled complex evolution (SCE) and particle swarm optimization (PSO) algorithms. The SFL has been applied on a wide
variety of optimization problems such as design of watermarking schemes [4], localization of wireless sensor network [5],
job shop scheduling problems [6], unit commitment problem [7], project scheduling problem [8] and distribution feeder
reconfiguration problem [9]. The SFL has excellent performance, but suffers from shortcomings of easily falling into local
minima, slow convergence in later stage of evolution, poor calculation accuracy [5]. To overcome these shortcomings, a vari-
ety of concepts have been proposed in the literature. A particle sharing based particle swarm frog leaping hybrid optimiza-
tion algorithm was proposed by Hui and Jia [10]. They combined the good capability of exploration in the PSO and the strong
ability of exploitation in the SFL to overcome the shortcomings of easily falling into local minima and premature conver-
gence. Zheng et al. [11] proposed a SFL with memory function which contained a memory of past experiences and initial
learning function. The frog could record the leaping distance in the last update, and used it to update the leaping distance
of this time. Tang-Huai et al. [5] used a strategy to improve the targeted learning of frog group and also to expand the diver-
sity of frog group learning. Their proposed algorithm introduced a new update learning strategy in the update process, mak-
ing the poor frog learned not only from the best frog of its own ethnic group, but also learned from the best frog of the
population, and at the same time added a diversity factor in the update learning strategy. Li et al. [12] concentrated on
improving the leaping rule of SFL performed by properly extending the leaping step size and adding a leaping inertia com-
ponent to account for social behavior. To further improve the local search ability of their proposed algorithm and speed up
convergence, they occasionally introduced extremal optimization, which had an excellent local exploration capability, in the
local exploration process of the algorithm. The idea used in Niknam and Azad-farsani [13] was a new frog leaping rule to
obtain a better local exploration of the SFL. They also proposed a hybrid EA which was the combination of self-adaptive
PSO and modified SFL. Fang and Wang [14] to enhance the exploitation ability performed a combined local search including
permutation-based local search and forward–backward improvement in each memeplex of SFL. Also basing on some theo-
retical analysis, speed-up evaluation methods were proposed to improve the efficiency of the SFL.

In the current research, we insert a new differential operator in evolutionary process of the SFL to diversify its search
moves and to prevent a premature loss of the genotypic diversity. The added operator also provides an overall and deep
search of space. So it can overcome the shortcomings of premature convergence where the population easily falls into some
local optimum of a multimodal objective function and the population loses its diversity.

The rest of the paper is organized as follows. In the next section, the SFL algorithm is briefly described. In Section 3, the
utilized strategy to improve the SFL is presented. The simulation results are presented and analyzed in Section 4. Section 5
concludes the paper.

2. The SFL

The SFL has been inspired by the memetic evolution of a set of frogs when researching for the location of food. Partition-
ing of frogs into several groups called memeplexes is an effective strategy particularly whenever the resource is unpredict-
ably distributed in patches. Every memplex involves a number of frogs with the same structure but different adaptabilities.
On the other part, shuffling process causes participating of every frog in previous experience of all other frogs during the
search for food. The SFL investigated by combining the ideas used in the SCE algorithm and PSO to design an improved
meta-heuristic to solve optimization problems. The SFL is a combination of deterministic and random approaches. The deter-
ministic strategy allows the algorithm to use response surface information effectively to guide the heuristic search as in the
PSO. The random elements ensure the flexibility and robustness of the search pattern [15].

The SFL includes three main stages: partitioning, local search and shuffling. In the SFL, candidate solutions initialize ran-
domly in search space and then members of population are sorted as a decreasing order according to their fitness. Then pop-
ulation is partitioned into several parallel subsets. The different memeplexes perform a local search independently using an
evolutionary process to evolve their quality for a defined maximum number of iterations. Then all memeplexes shuffle
together and the termination criteria are checked that if are not met, the partitioning, local search and shuffling process
are continued. General framework of SFL and a flowchart of its structure are shown in Figs. 1 and 2, respectively. According
to the evolutionary process of SFL, the worst frog of each memeplex updates its position according to the position of the best
frog of its memeplex or the best frog found so far or randomly.

To generate a new frog in every memeplex, firstly the SFL applies Eqs. (1) and (2) between xb and xw to produce xn (Step 3.4
in Fig. 1).

Dxw ¼ kðxb � xwÞ; �Dxw max 6 Dxw 6 Dxw max ð1Þ

xn ¼ xw þ Dxw ð2Þ
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