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a b s t r a c t

In this paper, the problem of stability analysis for static neural networks with interval
time-varying delays is considered. By the consideration of new augmented Lyapunov func-
tionals, new and improved delay-dependent stability criteria to guarantee the asymptotic
stability of the concerned networks are proposed with the framework of linear matrix
inequalities (LMIs), which can be solved easily by standard numerical packages. The
enhancement of the feasible region of the proposed criteria is shown via two numerical
examples by the comparison of maximum delay bounds.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

When the mathematical model of the plant is unknown or ill-defined, some complexities in the analysis and design of
dynamic systems are unavoidable and it has been known that intelligent system theories as a analyzing method of the
dynamic systems are more effective in such cases. Unlike conventional methods in control theories, intelligent control the-
ories are based on artificial intelligence rather than on a plant model. One of class of artificial intelligence is neural networks.
Their stability analysis is a very important and prerequisite task because the application of neural networks heavily depends
on the dynamic behavior of equilibrium points. For this reason, during a few decades, neural networks have been extensively
applied in many areas such as reconstruction of moving image, signal processing, the tasks of pattern recognition, associative
memories, fixed-point computations, and so on [1]. Moreover, to characterize the dynamical evolution rule of neural
networks, according to the use of the neural states or the local field states of neurons, the model of neural networks can
be classified into static neural networks or local field networks [1–3].

On the other hand, it is also needed to pay attention to a delay in the time. It is well known that, in the implementation of
the networks, there are the finite speed limit of information processing and its attendant time-delay. The delay leads to
undesirable dynamic behaviors such as oscillation and instability of the networks. Therefore, the study on stability analysis
for various systems with time-delay has been widely investigated [4–15].

Return to static neural network, this network is also extended to the stability problem with time-delay [16–22]. Above all,
in [16], the delay-independent and dependent criteria for static neural networks were derived. Zuo et al. [18] investigated

http://dx.doi.org/10.1016/j.amc.2014.04.089
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: madwind@chungbuk.ac.kr (O.M. Kwon), netgauss@chungbuk.ac.kr (M.J. Park), jessie@ynu.ac.kr (J.H. Park), moony@daegu.ac.kr

(S.M. Lee), ejcha@chungbuk.ac.kr (E.J. Cha).

Applied Mathematics and Computation 239 (2014) 346–357

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.04.089&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.04.089
mailto:madwind@chungbuk.ac.kr
mailto:netgauss@chungbuk.ac.kr
mailto:jessie@ynu.ac.kr
mailto:moony@daegu.ac.kr
mailto:ejcha@chungbuk.ac.kr
http://dx.doi.org/10.1016/j.amc.2014.04.089
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


the problem of delay-dependent stability for time-delay static neural networks by considering some semipositive-definite
free matrices. In [19], the stability and dissipativity problems of static neural networks with time-varying delay were inves-
tigated by using the delay partitioning technique. Sun and Chen [20] proposed the stability criteria for a class of static neural
networks by constructing the new augmented Lyapunov functional which fully uses the information about the lower bound
of the delay and contains some new double integral and triple-integral terms. Li et al. [21] developed a unified approach in
stability analysis of generalized static neural networks with time-varying delays and linear fractional uncertainties by
utilizing some novel transformation and discretized scheme. Here, in order to obtain more tighter lower bounds of integral
terms of quadratic form, Wirtinger-based integral inequality in [12] is the recent remarkable tool in delay-dependent stabil-
ity analysis of dynamic systems with delays. Therefore, there are scopes for further enhanced results in stability analysis of
static neural networks with time-delay.

With this motivation mentioned above, in this paper, the problem to get improved delay-dependent stability criteria for
the static neural networks with interval time-varying delays are investigated. Here, stability or stabilization of system with
interval time-varying delays has been a focused topic of theoretical and practical importance [23] in very recent years. The
system with interval time-varying delays means that the lower bounds of time-delay which guarantees the stability of sys-
tem is not restricted to be zero, and include networked control system as one of typical examples. By construction of a suit-
able augmented Lyapunov–Krasovskii functional and utilization of Wirtinger-based integral inequality [12] with reciprocally
convex approach [13], an improved stability criterion for guaranteeing the asymptotic of static neural networks is derived in
Theorem 1 with the framework of LMIs which can be formulated as convex optimization algorithms which are amenable to
computer solution [24]. Also, inspired by the works of [13,14], the reciprocally convex approach and zero equality are uti-
lized with some decision variables to reduce the conservatism of the stability criterion. Based on the result of Theorem 1, a
further improved result will be proposed in Theorem 2 by introducing a newly augmented Lyapunov–Krasovskii functional.
Finally, two numerical examples are included to show the effectiveness of the proposed methods.

Notation Throughout this paper, the used notations are standard. Rn is the n-dimensional Euclidean vector space, and
Rm�n denotes the set of all m� n real matrices. For symmetric matrices X and Y ; X > Y means that the matrix X � Y is
positive definite, whereas X P Y means that the matrix X � Y is nonnegative. In;0n and 0m�n denote n� n identity matrix,
n� n and m� n zero matrices, respectively. diagf. . .g denotes the block diagonal matrix. For square matrix X;symfXgmeans
the sum of X and its symmetric matrix XT ; i.e., symfXg ¼ X þ XT . X ½f ðtÞ� 2 Rm�n means that the elements of matrix X½f ðtÞ� include
the scalar value of f ðtÞ; i.e., X ½f0 � ¼ X½f ðtÞ¼f0 �.

2. Preliminaries and problem statement

Consider the following static neural networks with time-varying delays:

_yðtÞ ¼ �AyðtÞ þ gðWyðt � hðtÞÞ þ uðtÞÞ; ð1Þ

where n denotes the number of neurons in a neural network, yðtÞ 2 Rn is the neuron state vector, gðWyðtÞÞ ¼ ½g1ðW1y1ðtÞÞ;
. . . ; gnðWnynðtÞÞ�

T 2 Rn denotes the neuron activation function vector, uðtÞ 2 Rn is the input vector, A ¼ diagfa1; . . . ; ang 2 Rn�n

with ai > 0 ði ¼ 1; . . . ;nÞ is a positive diagonal matrix, W ¼ ½WT
1; . . . ;WT

n�
T 2 Rn�n is the delayed interconnection weight

matrix. The delay hðtÞ is time-varying function satisfying

hm 6 hðtÞ 6 hM ;
_hðtÞ 6 hD;

where hm and hM are known positive scalars, and hD is a constant.
It is assumed that the neuron activation functions satisfy the following condition.

Assumption 1. The neuron activation functions gið�Þ ði ¼ 1; . . . ;nÞ are continuous, bounded and satisfy

k�i 6
giðuÞ � giðvÞ

u� v 6 kþi ; 8u; v 2 R; u – v ; gið0Þ ¼ 0; ð2Þ

where kþi and k�i ðk
þ
i > k�i Þ are constants.

For simplicity, in stability analysis of the system (1), the equilibrium point y� ¼ ½y�1; . . . ; y�n�
T whose uniqueness has been

reported in [25] is shifted to the origin by utilizing the transformation xð�Þ ¼ yð�Þ � y�, which leads the system (1) to the
following form:

_xðtÞ ¼ �AxðtÞ þ f ðWxðt � hðtÞÞÞ; ð3Þ

where xðtÞ 2 Rn is the state vector of the transformed system,
f ðWxð�ÞÞ ¼ ½f1ðW1y1ðtÞÞ; . . . ; fnðWnynðtÞÞ�

T 2 Rn with f ðWxð�ÞÞ ¼ gðWxð�Þ þ y�Þ � gðWy� þ uÞ and f ð0Þ ¼ 0.
It should be noted that the functions fið�Þ ði ¼ 1; . . . ;nÞ satisfy the following condition:

k�i 6
fiðuÞ � fiðvÞ

u� v 6 kþi ; 8u;v 2 R; u – v ; f ið0Þ ¼ 0: ð4Þ

From (4), if v ¼ 0, then we have
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