Positive periodic solutions of second-order differential equations with weak singularities

Ruyun Ma ${ }^{*, 1}$, Ruipeng Chen, Zhiqian He
Department of Mathematics, Northwest Normal University, Lanzhou 730070, PR China

ARTICLE INFO

Keywords:

Positive periodic solutions
Schauder's fixed point theorem
Weak singularities

Abstract

We establish the existence of positive periodic solutions of the second-order differential equation $$
u^{\prime \prime}+a(t) u=f(t, u)+c(t)
$$

via Schauder's fixed point theorem, where $a \in L^{1}\left(\mathbb{R} / T \mathbb{Z} ; \mathbb{R}_{+}\right), c \in L^{1}(\mathbb{R} / T \mathbb{Z} ; \mathbb{R}), f$ is a Carathéodory function and is singular at $u=0$. Our main results generalize some recent results by P.J. Torres.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction and the main results

In this paper, we are concerned with the existence of positive periodic solutions of the second-order differential equation

$$
\begin{equation*}
u^{\prime \prime}+a(t) u=f(t, u)+c(t) \tag{1.1}
\end{equation*}
$$

where $a \in L^{1}\left(\mathbb{R} / T \mathbb{Z} ; \mathbb{R}_{+}\right), c \in L^{1}(\mathbb{R} / T \mathbb{Z} ; \mathbb{R}), f \in \operatorname{Car}(\mathbb{R} / T \mathbb{Z} \times(0, \infty), \mathbb{R})$, which means $\left.f\right|_{[0, T]}:[0, T] \times(0, \infty) \rightarrow \mathbb{R}$ is a $L^{1}-$ Carathéodory function, and f is singular at $u=0$.

In the case that $a(t) \equiv 0$ and $f(t, u)=\frac{1}{u^{\prime}},(1.1)$ reduces to the special equation

$$
\begin{equation*}
u^{\prime \prime}=\frac{1}{u^{\lambda}}+c(t) \tag{1.2}
\end{equation*}
$$

which was initially studied by Lazer and Solimini [1]. They proved that for $\lambda \geqslant 1$ (called strong force condition in a terminology first introduced by Gordon [2,3]), a necessary and sufficient condition for the existence of a positive periodic solution of (1.2) is that the mean value of c is negative,

$$
\bar{c}:=\frac{1}{T} \int_{0}^{T} c(t) d t<0 .
$$

Moreover, if $0<\lambda<1$ (weak force condition) they found examples of functions c with negative mean values and such that periodic solutions do not exist.

If compared with the literature available for strong singularities, see [4-15] and the references therein, the study of the existence of periodic solutions under the presence of a weak singularity is much more recent and the number of references is considerably smaller. The likely reason may be that with a weak singularity, the energy near the origin becomes finite, and this fact is not helpful for obtaining a priori bound needed for a classical application of the degree theory, and also is not

[^0]helpful for the fast rotation needed in recent versions of the Poincaré-Birkhoff theorem. The first existence result with weak force condition appears in Rachunková et al. [16]. Since then, Eq. (1.1) with f has weak singularities has been studied by several authors, see Torres [17,18], Franco and Webb [19], Chu and Li [20].

Recently, Torres [18] showed how a weak singularity can play an important role if Schauder's fixed point theorem is chosen in the proof of the existence of positive periodic solution for (1.1). From now on, for a given function $\xi \in L^{\infty}[0, T]$, we denote the essential supremum and infimum of ξ by ξ^{*} and ξ_{*}, respectively. We write $\xi \succ 0$ if $\xi \geqslant 0$ for a.e. $t \in[0, T]$ and it is positive in a set of positive measure. Under the assumption.
(H1) The linear equation $u^{\prime \prime}+a(t) u=0$ is nonresonant and the corresponding Green's function

$$
G(t, s) \geqslant 0, \quad(t, s) \in[0, T] \times[0, T]
$$

Torres showed the following three results.
Theorem A [18, Theorem 1]. Let (H1) hold and define

$$
\begin{equation*}
\gamma(t)=\int_{0}^{T} G(t, s) c(s) d s \tag{1.3}
\end{equation*}
$$

Assume that
(H2) there exist $b \in L^{1}(0, T)$ with $b \succ 0$ and $\lambda>0$ such that

$$
0 \leqslant f(t, u) \leqslant \frac{b(t)}{u^{\lambda}}, \quad \text { for all } u>0, \quad \text { a.e. } t \in[0, T]
$$

If $\gamma_{*}>0$, then there exists a positive T-periodic solution of (1.1).

Theorem B [18, Theorem 2]. Let (H1) hold. Assume that
(H3) there exist two functions $b, \hat{b} \in L^{1}(0, T)$ with $b, \hat{b} \succ 0$ and a constant $\lambda \in(0,1)$ such that

$$
0 \leqslant \frac{\hat{b}(t)}{u^{\lambda}} \leqslant f(t, u) \leqslant \frac{b(t)}{u^{\lambda}}, \quad u \in(0, \infty), \quad \text { a.e. } t \in[0, T]
$$

If $\gamma_{*}=0$. Then (1.1) has a positive T-periodic solution.

Theorem C [18, Theorem 4]. Let (H1) and (H3) hold. Let

$$
\hat{\beta}_{*}=\min _{t \in[0, T]}\left(\int_{0}^{T} G(t, s) \hat{b}(s) d s\right), \quad \beta^{*}=\max _{t \in 0, T]}\left(\int_{0}^{T} G(t, s) b(s) d s\right) .
$$

If $\gamma^{*} \leqslant 0$ and

$$
\gamma_{*} \geqslant\left(\frac{\hat{\beta}_{*}}{\left(\beta^{*}\right)^{\lambda}} \lambda^{2}\right)^{\frac{1}{1-\lambda^{2}}}\left(1-\frac{1}{\lambda^{2}}\right)
$$

Then (1.1) has a positive T-periodic solution.
Obviously, (H2) and (H3) are too restrictive that the above mentioned results are only applicable to (1.1) with nonlinearity which is bounded in origin and infinity by a function of the form $\frac{1}{u^{*}}$.

Of course the natural question is what would happen if we allow that the nonlinearity f is bounded by two different functions $\frac{1}{u^{\alpha}}$ and $\frac{1}{u^{\beta}}$?

It is the purpose of this paper to study the existence of positive periodic solutions of (1.1) under the more general assumptions.
(A1) $\left.f\right|_{\mid 0, T]}:[0, T] \times(0, \infty) \rightarrow \mathbb{R}$ is a L^{1}-Carathéodory function.
(A2) There exist $b, e \in L^{1}(0, T)$ with $b, e \succ 0, \alpha, \beta \in(0, \infty), m \leqslant 1 \leqslant M$, such that

$$
0 \leqslant f(t, u) \leqslant \frac{b(t)}{u^{\alpha}}, \quad u \in(M, \infty), \quad \text { a.e. } t \in[0, T]
$$

and

$$
0 \leqslant f(t, u) \leqslant \frac{e(t)}{u^{\beta}}, \quad u \in(0, m), \quad \text { a.e. } t \in[0, T] .
$$

https://daneshyari.com/en/article/4628029

Download Persian Version:
https://daneshyari.com/article/4628029

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mary@nwnu.edu.cn (R. Ma), ruipengchen@126.com (R. Chen), zhiqianhe1987@163.com (Z. He).
 ${ }^{1}$ Supported by the NSFC (No. 11361054), SRFDP (No. 20126203110004), Gansu provincial National Science Foundation of China (No. 1208RJZA258).

