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a b s t r a c t

We establish the existence of positive periodic solutions of the second-order differential
equation

u00 þ aðtÞu ¼ f ðt;uÞ þ cðtÞ

via Schauder’s fixed point theorem, where a 2 L1ðR=TZ; RþÞ; c 2 L1ðR=TZ; RÞ; f is a Carat-
héodory function and is singular at u ¼ 0. Our main results generalize some recent results
by P.J. Torres.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction and the main results

In this paper, we are concerned with the existence of positive periodic solutions of the second-order differential equation

u00 þ aðtÞu ¼ f ðt;uÞ þ cðtÞ; ð1:1Þ

where a 2 L1ðR=TZ; RþÞ; c 2 L1ðR=TZ; RÞ; f 2 CarðR=TZ� ð0;1Þ; RÞ, which means f j½0;T� : ½0; T� � ð0;1Þ ! R is a L1-
Carath�eodory function, and f is singular at u ¼ 0.

In the case that aðtÞ � 0 and f ðt;uÞ ¼ 1
uk, (1.1) reduces to the special equation

u00 ¼ 1
uk
þ cðtÞ; ð1:2Þ

which was initially studied by Lazer and Solimini [1]. They proved that for k P 1 (called strong force condition in a terminol-
ogy first introduced by Gordon [2,3]), a necessary and sufficient condition for the existence of a positive periodic solution of
(1.2) is that the mean value of c is negative,

c :¼ 1
T

Z T

0
cðtÞdt < 0:

Moreover, if 0 < k < 1 (weak force condition) they found examples of functions c with negative mean values and such that
periodic solutions do not exist.

If compared with the literature available for strong singularities, see [4–15] and the references therein, the study of the
existence of periodic solutions under the presence of a weak singularity is much more recent and the number of references is
considerably smaller. The likely reason may be that with a weak singularity, the energy near the origin becomes finite, and
this fact is not helpful for obtaining a priori bound needed for a classical application of the degree theory, and also is not
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helpful for the fast rotation needed in recent versions of the Poincaré-Birkhoff theorem. The first existence result with weak
force condition appears in Rachunková et al. [16]. Since then, Eq. (1.1) with f has weak singularities has been studied by sev-
eral authors, see Torres [17,18], Franco and Webb [19], Chu and Li [20].

Recently, Torres [18] showed how a weak singularity can play an important role if Schauder’s fixed point theorem is cho-
sen in the proof of the existence of positive periodic solution for (1.1). From now on, for a given function n 2 L1½0; T�, we de-
note the essential supremum and infimum of n by n� and n�, respectively. We write n � 0 if n P 0 for a.e. t 2 ½0; T� and it is
positive in a set of positive measure. Under the assumption.

(H1) The linear equation u00 þ aðtÞu ¼ 0 is nonresonant and the corresponding Green’s function

Gðt; sÞP 0; ðt; sÞ 2 ½0; T� � ½0; T�:

Torres showed the following three results.

Theorem A [18, Theorem 1]. Let (H1) hold and define

cðtÞ ¼
Z T

0
Gðt; sÞcðsÞds: ð1:3Þ

Assume that

(H2) there exist b 2 L1ð0; TÞ with b � 0 and k > 0 such that

0 6 f ðt;uÞ 6 bðtÞ
uk

; for all u > 0; a:e: t 2 ½0; T�:

If c� > 0, then there exists a positive T-periodic solution of (1.1).

Theorem B [18, Theorem 2]. Let (H1) hold. Assume that

(H3) there exist two functions b; b̂ 2 L1ð0; TÞ with b; b̂ � 0 and a constant k 2 ð0;1Þ such that

0 6
b̂ðtÞ
uk
6 f ðt;uÞ 6 bðtÞ

uk
; u 2 ð0;1Þ; a:e: t 2 ½0; T�:

If c� ¼ 0. Then (1.1) has a positive T-periodic solution.

Theorem C [18, Theorem 4]. Let (H1) and (H3) hold. Let

b̂� ¼ min
t2½0;T�

Z T

0
Gðt; sÞb̂ðsÞds

� �
; b� ¼max

t2½0;T�

Z T

0
Gðt; sÞbðsÞds

� �
:

If c� 6 0 and

c� P
b̂�
ðb�Þk

k2

 ! 1
1�k2

1� 1
k2

� �
:

Then (1.1) has a positive T-periodic solution.

Obviously, (H2) and (H3) are too restrictive that the above mentioned results are only applicable to (1.1) with nonlinear-
ity which is bounded in origin and infinity by a function of the form 1

uk.
Of course the natural question is what would happen if we allow that the nonlinearity f is bounded by two different func-

tions 1
ua and 1

ub?
It is the purpose of this paper to study the existence of positive periodic solutions of (1.1) under the more general

assumptions.

(A1) f j½0;T� : ½0; T� � ð0;1Þ ! R is a L1-Carath�eodory function.
(A2) There exist b; e 2 L1ð0; TÞ with b; e � 0;a; b 2 ð0;1Þ;m 6 1 6 M, such that

0 6 f ðt;uÞ 6 bðtÞ
ua ; u 2 ðM;1Þ; a:e: t 2 ½0; T�;

and

0 6 f ðt;uÞ 6 eðtÞ
ub

; u 2 ð0;mÞ; a:e: t 2 ½0; T�:
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