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ARTICLE INFO ABSTRACT

Keywords: In this paper, we investigate the variational problem for a sequence of 3-dimensional
Homogenization domains with highly oscillating boundaries. Using the unfolding method and the averaging
Unfolding operator method, we obtain the result of the homogenization problem, that is, a sequence of solu-

Unfolding method tions of Eq. (3.1) converges to the solution of Eq. (3.4) as the periodic length approaches

zero. It is noteworthy that the convergence is in the strong sense.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The periodic unfolding method was introduced in [6] by Cioranescu et al. for the study of classical periodic homogeniza-
tion in the case of fixed domains and further described in [1-4,8,9,11]. This method was also applied to problems with holes
and truss-like structures or in linearized elasticity.

The homogenization of periodic structures was carried out in the last 30 years for various kinds of problems involving
differential equations[12-15] and systems, as well as integral energies. But most of these works all got the weak conver-
gence. Recently, there was a break in [5,7], where the achievement of strong convergence was obtained. In [10], the unfolding
method was applied to a linear elliptic equation in the oscillating boundary cases in two-dimension space, and the new re-
sult of strong convergence was obtained. The purpose of this paper is to generalize the work in [10], i.e. we apply the periodic
unfolding method to a variational problem in the oscillating boundary cases in three-dimension space, and obtain the strong
convergence result. The symbols used in this paper are the same as the ones to those in [10].

We will work on domains which are constructed as follows. Let € R such that g € (0,1),1/¢ = N, where N is a positive
integer. Define

N-1 N—
Q= (ke ke + pe) x | (e, le + pe) x (0,1),
k=0 =0

—_

Qs =(0,1) x (0,1) x (—=1,0), Q5N Qs =T, Q, = Q, UQUT,, Q4 = (0,1)°, Q= (0,1) x (0,1) x (—1,1).
2. The unfolding operator

A linear operator on L' () will be defined and used to interpret integrals over ¢é-dependent domains as integrals over a
fixed domain. This operator is called the unfolding operator.
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We will use the following notations: Let [] : R — Z and {-} : R — [0, 1) denote the functions which map every real number
to its integer part and the fractional part.

Definition 2.1 (The unfolding operator). For every &> 0, ueL'(Q%), we define the unfolding operator T°:L'(Q%)
— L'(Q4 x (0, B)?) by setting

' X X
T?(u)(x1,X2,X3,X4,X5) = u(a E] + 8x478b2] + sxs,xg)
for every (x1,X2,x3) € Q4 and (X4,Xs) € (0,[)’)2.
If U is an open subset of R® containing Q; and u is a real-valued function on U, T*u will mean T* acting on the restriction of
u to Q. The following propositions state the properties of T* which will be used later. Most of them are straightforward and

their proofs are omitted.

Proposition 2.1. T? is linear.
Proposition 2.2. Let u, v be functions: QO — R, then T°(uv) = T°uT*v.
Proposition 2.3. Let x € Q) and u : Q; — R, then T u(xy, X2, X3, {2}, {£2}) = u(xy, X2, X3) = u(x).

Proposition 2.4. Let u € L' (Q), then

/ Tfudx = / udx.
Jux(0,8)% [0

A

Proof. Suppose that u € L' (Q}). By Fubini’s theorem and the fact that T°u is piecewise constant in x; and x,,

I
/ TPudx = / / / / / + EX4, € [ 2] + £x5,x3)dx1dx2dx3dx4dx5
Qax(0, /J X1 = Xy = X3= Xg= X5=

B B N 1 ka+aN 1 le+e
= / / / / u(ek + x4, el + x5, x3)dx1dx,dx3dx4dxs
=0 Jx4= X

=0 }—o Jx1=ke g /X2

1N ke+pe le+pe
= Z/ / / xl,x27x3)dx1dx2dx3:/ u(x)dx. O
Xx3=0 Jx;= Xz Q4

Proposition 2.5. Let u e [*(Q), then Tu e L*(Q x (0,B)?). Moreover, T°u is a linear isometry between L*(C¥) and
L*(Q4 x (0, B)*).

Proof. Suppose that u € L*(Q%), then [uf* € L'(Q%). By Proposition 2.2 and 2.4, we have:

/ [Téu)?dx = / Té|ufPdx = / u]?dx < oo.
Qax(0.9)? Qx(0.4° %

By the previous calculation we can see that T® is a mapping preserving norm, that is ||T’u\|Lz (Qux (0 Hu”,_z . This
Proposition and Proposition 2.1 imply that T* is a linear isometry between L?(Q%) and L*(Q4 x (0, 8)%). O

Proposition 2.6. Let uec H'(Q}), then Tue LZ((O 1) x (0 1) H]((O 1) x (0, ) % (0,4))). Furthermore, ;2-T‘u=T"ZL,
e Tu=eT" fand J-T'u = eT° 4L s X5

Proof. According to the chain rule, we can obtain

%Té c‘?igu( { ] + &Xa4, 8{ ] + &Xs, x;) ZU3(8|:%] +8x4,8{x—2] +ex5,x3) TL;Z
%T’“‘u 8?(411( {8] + X4, 8{ ] + &xs, x;) =8u1(8r81] + X4, 8[ ] + X5, x3) :8Tﬂg—u],
%T”u = aisu( f%] +8X4,8r%2] +8X5,X3) = &l (8 f%] + 8X4,8[?2] —|—8x5,x3) = zaT’3 axz'
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