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a b s t r a c t

A model of genetic regulatory system with delay is considered, and it is proved that under
certain conditions the model has a unique constant equilibrium which is globally attrac-
tive. This result limits the parameter space for which oscillations are possible.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In [5], Smolen et al. proposed the following delayed differential equations to model genetic regulatory system:

d½TF�A�
dt ¼ k1;f ½TF�A�2

½TF�A�2þK1;dð1þ½TF�R�=KR;dÞ

� �
ðt � sÞ � k1;d½TF � A� þ r;

d½TF�R�
dt ¼ k2;f ½TF�A�2

½TF�A�2þK2;dð1þ½TF�R�=KR;dÞ

� �
ðt � sÞ � k2;d½TF � R�;

8>>><
>>>:

ð1:1Þ

where ½TF � A� and ½TF � R� denote the concentrations of transcription factors TF � A and TF � R, respectively. Here parame-
ters ki;f ; ki;d;Ki;d, (i ¼ 1;2), r and KR;d are all positive constants, and the delay s > 0 is the time between transcription and
appearance of functional protein. More detailed explanation of the above model can be found in [4,5]. It was shown numer-
ically that delay could induce oscillations for system (1.1), (see reference [5]). Then in [6], Wan and Zou analyzed Hopf bifur-
cation of system (1.1), and their results implied that the delay could induce oscillations. For convenience, letting

x ¼ ½TF � A�; y ¼ ½TF � R�; KR;d ¼ q and ki ¼ ki;f ; pi ¼ Ki;d; li ¼ ki;d; for i ¼ 1;2;

we analyzed the model in the following form:

dx
dt ¼

k1xðt�sÞ2

xðt�sÞ2þp1ð1þyðt�sÞ=qÞ
� l1xðtÞ þ r;

dy
dt ¼

k2xðt�sÞ2

xðt�sÞ2þp2ð1þyðt�sÞ=qÞ
� l2yðtÞ:

8><
>: ð1:2Þ

There are also many results about stability and bifurcations on other gene regulatory network models, (see references
[1,7,8]).
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In this note, we prove that in some parameter regions the constant positive equilibrium of system (1.2) is globally attrac-
tive through upper and lower solutions methods. Hence our result implies that delay-induced oscillations could occur only
when the parameters are out of these regions.

2. Main results

We consider system (1.2) with the following initial condition:

xðsÞ ¼ x0ðsÞ � 0 yðsÞ ¼ y0ðsÞ � 0; s 2 ½�s;0�; ð2:1Þ

where x0ð0Þ; y0ð0Þ > 0, and x0ðsÞ; y0ðsÞ 2 Cð½�s;0�;RÞ. Then we have the following results on the global existence of the solu-
tion of system (1.2) and (2.1).

Lemma 2.1. Assume that the parameters q; r; s, and ki; li; piði ¼ 1;2Þ are all positive. Then for any initial value x0ðsÞ; y0ðsÞ � 0,
where x0ð0Þ; y0ð0Þ > 0, system (1.2) has a unique positive solution ðxðtÞ; yðtÞÞ exists on ½�s;1Þ.

Proof. From the variation-of-constants formula, we have

xðtÞ ¼ e�l1tx0ð0Þ þ
Z t

0
e�l1ðt�sÞ k1x0ðs� sÞ2

x0ðs� sÞ2 þ p1ð1þ y0ðs� sÞ=qÞ
þ r

" #
ds;

yðtÞ ¼ e�l2ty0ð0Þ þ
Z t

0
e�l2ðt�sÞ k2x0ðs� sÞ2

x0ðs� sÞ2 þ p2ð1þ y0ðs� sÞ=qÞ

" #
ds ð2:2Þ

for t 2 ½0; s�. Since x0ðsÞ; y0ðsÞ � 0 and x0ð0Þ; y0ð0Þ > 0, Eq. (2.2) yields xðtÞ; yðtÞ > 0 for t 2 ½0; s�. Then by the method of steps
we can prove the lemma. h

In the following, we mainly focus on the global attractivity of the equilibrium of system (1.2). The proof is based on the
upper and lower solutions method in [2,3]. First, we show that any solution of system (1.2) is attracted by an invariant rect-
angular region.

Lemma 2.2. Suppose that the parameters q; r; s, and ki; li; piði ¼ 1;2Þ are all positive. Choose a constant �0 so that

0 < �0 < min
r

2l1
;

k2r2

r2l2 þ 4l2
1l2p2 1þ k2

l2
þ r

2l1

� �
=q

h i
8<
:

9=
;

and define

c1 ¼
k1 þ r

l1
þ �0; c1 ¼

r
l1
� �0; c2 ¼

k2

l2
þ �0; c2 ¼

k2c2
1

l2½c2
1 þ p2ð1þ c2=qÞ� � �0:

Then this chosen positive ci; ciði ¼ 1;2Þ, satisfy

k1c2
1

c2
1
þp1ð1þc2=qÞ � l1c1 þ r � 0; k2c2

1
c2

1
þp2ð1þc2=qÞ � l2c2 � 0;

k1c2
1

c2
1þp1ð1þc2=qÞ � l1c1 þ r � 0; k2c2

1
c2

1þp2ð1þc2=qÞ � l2c2 � 0
ð2:3Þ

and for any initial value x0ðsÞ; y0ðsÞ � 0, where x0ð0Þ; y0ð0Þ > 0, there exists t0 > 0 such that the corresponding solution ðxðtÞ; yðtÞÞ
satisfies

ðc1; c2Þ 6 ðxðtÞ; yðtÞÞ 6 ðc1; c2Þ

for any t > t0ð/Þ.

Proof. It can be easy to verify that ci; ciði ¼ 1;2Þ are positive, and satisfy Eq. (2.3). Then we only need to prove that the solu-
tion of system (1.2) is attracted by an invariant rectangular region. Since xðtÞ satisfies

dx
dt
¼ k1xðt � sÞ2

xðt � sÞ2 þ p1ð1þ yðt � sÞ=qÞ
� l1xðtÞ þ r P r � l1x and

dx
dt
¼ k1xðt � sÞ2

xðt � sÞ2 þ p1ð1þ yðt � sÞ=qÞ
� l1xðtÞ þ r 6 k1 þ r � l1x;
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