

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Couple-group consensus for second-order multi-agent systems with fixed and stochastic switching topologies

Huanyu Zhao a,b, Ju H. Park a,*, Yulin Zhang b

- ^a Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea
- ^b Faculty of Electronic and Electrical Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China

ARTICLE INFO

Keywords: Couple-group consensus Multi-agent system Fixed topology Stochastic switching topology

ABSTRACT

This paper deals with the couple-group consensus problem for second-order discrete-time multi-agent systems. Both the fixed topology case and the stochastic switching topology case are considered. The couple-group consensus problem is converted into the stability problem of the error system by a linear transformation. For the fixed topology case, we obtain two different conditions of couple-group consensus. For the stochastic switching topology case, we obtain a necessary and sufficient condition of mean-square couple-group consensus. Algorithms are provided to design the allowable control gains. Finally, simulation examples are given to show the usefulness of the theoretical results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the past decade, distributed cooperative control has attracted a tremendous amount of interest. As one important branch of distributed cooperative control, the consensus problem has made a great progress [1–5]. In the early literature, attentions were mainly focus on the single-integrator [6,7]. In [6], the consensus seeking problem of multi-agent systems with dynamically changing interaction topologies was studied, where both discrete and continuous consensus algorithms were considered. The LMI method was used to deal with the robust \mathcal{H}_{∞} consensus problem of single-order multi-agent systems with uncertainty in [7]. The consensus problem for double-integrator multi-agent systems has also attracted a lot of attentions since the theoretical framework of consensus problem for multi-agent systems was posed [8,9]. In [8], some necessary and sufficient conditions of consensus for second-order multi-agent systems were obtained, where the systems with communication delays also were considered. In [9], the second-order consensus problem of multi-agent systems with inherent delayed nonlinear dynamics and intermittent communications was studied.

Recently, the multi-agent systems with fixed topology have been extended to switching topology scenario [10,11]. In [10], second-order consensus problem of multi-agent systems with switching topology and communication delay was studied, where the switching signal was arbitrary and the every topology was connected. In [11], the authors studied the finite-time consensus problem for second-order networked multi-agent systems with an undirected switching graph. However, the switching topologies are in the deterministic framework in the above literature. Some consensus results for multi-agent systems with stochastic switching topologies have been obtained [12–14]. In [12], the authors studied the mean square consensusability problem for a network of double-integrator agents with Markov switching topologies. While in [14], an observer-based control strategy for networked multi-agent systems with communication delay and stochastic switching

E-mail addresses: hyzhao10@gmail.com (H. Zhao), jessie@ynu.ac.kr (J.H. Park).

^{*} Corresponding author.

topology was presented. The mean-square consensus problem of multi-agent systems was converted into the mean-square stability problem of an equivalent system by a system transformation.

Very recently, increasing interest has turned to group consensus problems for multi-agent systems. The main idea of group consensus is that the interaction topology includes several subgroups, and each subgroup has a spanning tree. The agents belong to different subgroups will reach different consensus states [15]. In [15], the definition of group consensus was presented and a novel consensus protocol was designed to solve the group consensus problem. In [16], the group consensus problem of multi-agent systems with switching topologies was studied. The group consensus was proved to be equivalent to the asymptotical stability of a class of switched linear systems by a double-tree-form transformation. In [17], another consensus protocol was designed to solve the couple-group consensus problem of multi-agent systems with directed fixed topology. In [18], two different kinds of consensus protocols were given to deal with the group consensus problem for double-integrator dynamic multi-agent systems. In [19], the sampled-data control method was employed to deal with the group consensus problem for multi-agent systems, where the interaction topology is undirected. However, to the best of authors knowledge, the group consensus problems for discrete-time multi-agent systems and the multi-agent systems with stochastic switching topologies have not been fully studied.

In this paper, we study the couple-group consensus problems for second-order discrete-time multi-agent systems with the fixed topology and the stochastic switching topology, respectively. The stochastic switching topologies are assumed to be governed by a homogeneous Markov chain. For the fixed topology case, we obtain a sufficient condition for couple-group consensus based on the eigenvalues of the matrix and a necessary and sufficient condition for couple-group consensus in form of matrix inequality, respectively. For the stochastic switching topology case, we obtain a necessary and sufficient condition for mean-square couple-group consensus in form of matrix inequality. Algorithms are given to design the feasible control gains.

Notation. Let \mathbb{C} , \mathbb{R} and \mathbb{N} represent, respectively, the complex number set, the real number set and the nonnegative integer set. Denote the spectral radius of the matrix M by $\rho(M)$. Suppose that $A, B \in \mathbb{R}^{p \times p}$. Let $A \succeq B$ (respectively, $A \succ B$) denote that A - B is symmetric positive semi-definite (respectively, symmetric positive definite). Given $X(k) \in \mathbb{R}^p$, define $\|X(k)\|_E \triangleq \|E[X(k)X^T(k)]\|_2$, where $E[\cdot]$ is the mathematical expectation. I_n denotes the $n \times n$ identity matrix. $Re(\cdot)$ and $Im(\cdot)$ represent, respectively, the real part and imaginary part of a number. Let $\mathbf{0}$ denote the zero matrix with appropriate dimensions.

2. Graph theory notations

Let $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{A})$ be a directed graph of order n, where $\mathcal{V}=\{v_1,\ldots,v_n\}$ and \mathcal{E} represent the node set and the edge set, respectively. $\mathcal{A}=[a_{ij}]\in\mathbb{R}^{n\times n}$ is the adjacency matrix associated with \mathcal{G} , where $a_{ij}>0$ if $(v_i,v_j)\in\mathcal{E}$, otherwise, $a_{ij}=0$. An edge $(v_i,v_j)\in\mathcal{E}$ if agent j can obtain the information from agent i. We say agent i is a neighbor of agent j. Let $N_i=\{v_j\in\mathcal{V}:(v_i,v_j)\in\mathcal{E}\}$ denote the neighbor set of agent i. The (nonsymmetrical) Laplacian matrix \mathcal{L} associated with \mathcal{A} and hence \mathcal{G} is defined as $\mathcal{L}=[l_{ij}]\in\mathbb{R}^{n\times n}$, where $l_{ii}=\sum_{j=1,j\neq i}^n a_{ij}$ and $l_{ij}=-a_{ij}, \forall i\neq j$. A directed path is a sequence of edges in a directed graph in the form of $(v_{i_1},v_{i_2}),(v_{i_2},v_{i_3}),\ldots$, where $v_{i_k}\in\mathcal{V}$. A directed tree is a directed graph, where every node has exactly one parent except for one node, called the root, which has no parent, and the root has a directed path to every other node. A directed spanning tree of \mathcal{G} is a directed tree that contains all nodes of \mathcal{G} . A directed graph has or contains a directed spanning tree if there exists a directed spanning tree as a subset of the directed graph, that is, there exists at least one node having a directed path to all of the other nodes. The union of graphs \mathcal{G}_1 and \mathcal{G}_2 is the graph $\mathcal{G}_1 \cup \mathcal{G}_2$ with vertex set $\mathcal{V}(\mathcal{G}_1) \cup \mathcal{V}(\mathcal{G}_2)$ and edge set $\mathcal{E}(\mathcal{G}_1) \cup \mathcal{E}(\mathcal{G}_2)$.

3. Problem formulation and main results

Suppose that the multi-agent system considered consists of n+m agents. Without loss of generality, we assume that the first n agents achieve a consistent state while the last m agents achieve another consistent state. Let $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{A})$ denote the topology of multi-agent system considered. Denote $\mathcal{I}_1=\{1,2,\ldots,n\},\mathcal{I}_2=\{n+1,n+2,\ldots,n+m\}$. Let $\mathcal{V}_1=\{v_1,v_2,\ldots,v_n\}$ and $\mathcal{V}_2=\{v_{n+1},v_{n+2},\ldots,v_{n+m}\}$ represent the first n agents and the last m agents, respectively. Then, $\mathcal{V}=\mathcal{V}_1\cup\mathcal{V}_2,\mathcal{V}_1\cap\mathcal{V}_2=\Phi$. In addition, let $N_{1i}=\{v_j\in\mathcal{V}_1:(v_i,v_j)\in\mathcal{E}\}$ and $N_{2i}=\{v_j\in\mathcal{V}_2:(v_i,v_j)\in\mathcal{E}\}$. It is obvious that $N_i=N_{1i}\cup N_{2i}$.

In this paper, we consider the second-order discrete-time multi-agent systems as follows:

$$\begin{cases} \xi_{i}[k+1] = \xi_{i}[k] + \zeta_{i}[k] \\ \xi_{i}[k+1] = \xi_{i}[k] + u_{i}[k] \end{cases}, \quad i = 1, 2, \dots, n+m, \tag{1}$$

where $\xi_i[k]$, $\zeta_i[k] \in \mathbb{R}$ are the position and the velocity of the *i*th agent, respectively; $u_i[k] \in \mathbb{R}$ is the control input of agent *i* at time *k*.

3.1. Fixed topology case

In [15–18], the continuous-time consensus algorithms were proposed. Motivated by these results, we consider the following discrete-time consensus algorithm

$$u_{i}[k] = \begin{cases} \sum_{j \in N_{1i}} a_{ij}[\alpha(\xi_{j}[k] - \xi_{i}[k]) + \beta(\zeta_{j}[k] - \zeta_{i}[k])] + \sum_{j \in N_{2i}} a_{ij}(\alpha\xi_{j}[k] + \beta\zeta_{j}[k]) & \forall i \in \mathcal{I}_{1}, \\ \sum_{j \in N_{2i}} a_{ij}[\alpha(\xi_{j}[k] - \xi_{i}[k]) + \beta(\zeta_{j}[k] - \zeta_{i}[k])] + \sum_{j \in N_{1i}} a_{ij}(\alpha\xi_{j}[k] + \beta\zeta_{j}[k]) & \forall i \in \mathcal{I}_{2}, \end{cases}$$

$$(2)$$

Download English Version:

https://daneshyari.com/en/article/4628075

Download Persian Version:

https://daneshyari.com/article/4628075

Daneshyari.com