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a b s t r a c t

Recently, a large number of mathematical models that are described by delay differential
equations (DDEs) have appeared in the life sciences. In this paper, we present a delay dif-
ferential model to describe the interactions between the effector and tumour cells. The
existence of the possible steady states and their local stability and change of stability via
Hopf bifurcation are theoretically and numerically investigated. Parameter estimation
problem for given real observations, using least squares approach, is studied. The global
stability and sensitivity analysis are also numerically proved for the model. The stability
and periodicity of the solutions may depend on the time-lag parameter. The model is qual-
itatively consistent with the experimental observations of immune-induced tumour dor-
mancy. The model also predicts dormancy as a transient period of growth which
necessarily results in either tumour elimination or tumour escape.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The immune system (IS) is a complex network of cells and signals that have evolved to respond to the presence of patho-
gens (such as bacteria, virus and fungi) and protect the body from cancer cells. IS basically works by keeping track of all sub-
stances normally found in the body. Any new substance in the body that the IS does not recognize raises an alarm, causing
the IS to attack it. Substances that cause an IS response are called ‘‘antigens’’. The IS can lead to destruction of anything con-
taining antigens, such as pathogens or cancer cells. Pathogens have substances on their outer surfaces such as certain pro-
teins that are not normally found in the human body. The IS sees these foreign substances as antigens. Cancer cells are also
different from normal cells in the body and they have unusual substances on their outer surfaces. However, the IS is such
better recognizing and attacking pathogens (harmful germs) than cancer cells. This is due to the fact that pathogens are very
different from normal human cells and are often easily seen as foreign, but cancer cells and normal cells have fewer clear
differences. This leads us to the fact that the IS may not always recognize cancer cells as foreign (see [18]). We should also
mention here that the immunity has basically two categories: innate (natural or non specific) immunity and adaptive (ac-
quired or specific) immunity, which are generally carrying out mutual and collaborative functions to eliminate pathogens
(see [19,25,26]). The innate immune system recognizes molecules produced by foreign invaders, or pathogens. Adaptive
immunity is very specific and does lead to an increase in response with repeated exposures. Exposure to a particular antigen
will lead to a faster, more effective response to that particular antigen in the future, but not to any other antigens. It will lead
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to the creation of memory T lymphocytes and memory B cells that will then be available to ’’remember’’ a particular species
of pathogen or other antigenic substance, so that the response will be more effective and rapid on subsequent exposure; See
[16,27].

Mathematical models of tumour-immune dynamics have added to our understanding of how host immune cells and can-
cerous cells evolve and interact (see e.g. [1,4,5,7–9,20,21,24,28,35,40]). Kuznetsov et al. [22] model the interactions of cyto-
toxic T lymphocyte (CTL) response and the growth of an immunogenic tumour. In recent contributions of [11,12,33,34], the
authors take into account the penetration of the tumour cells by the effector cells, which simultaneously causes the inacti-
vation of effector cells. The authors in [6] consider the effects of time delay on the two-dimensional system which represents
the basic model of the immune response. They study variations of the stability of the fixed points due to time delay and the
possibility for the occurrence of the chaotic solutions. Foryś and Kolev [13] propose and study the role of time delay in solid
avascular tumour growth. They study a delay model in terms of a reaction–diffusion equation and mass conservation law.
Two main processes are taken into account i.e. proliferation and apoptosis. In [15], Galach provides a simplified version
of the Kuznetsov–Taylor model where immune reactions are described by a bilinear term with time delay. Yafia [39] ana-
lyzed an interaction between the proliferating and quiescent cells tumour with a single delay. He showed the occurrence
of Hopf bifurcation as the delay crosses some critical value; See [41].

In the present paper, we adopt a predator–prey formulation of the tumour immunity problem as a battle between im-
mune cells and tumour cells (predators and prey, respectively). The model has a simple formulation in terms of delay-dif-
ferential equations (DDEs). The critical time-delay, for which a destabilising Hopf bifurcation of the relevant fixed point
occurs, and the conditions on the parameters for such bifurcation are found. Furthermore, delay-dependent global stability
conditions for the proposed model are derived by constructing Lyapunov–Krasovskii functional and applying Linear Matrix
Inequality (LMI) approach [14]. We then calculate the maximum allowable upper bound of the time delay s of the linearized
system.

We take into account the time delay to describe the time needed by the immune system to launch a suitable response
after recognizing the non-self cells or foreign bodies. We fit the proposed model to experimental data of tumour cells that
developed in the spleen of the laboratory mice to identify the appropriate parameters dedicated to study the dynamics of the
model. We also investigate the sensitivity analysis of the model to determine the most sensitive parameters and informative
subintervals. The paper is organized as follows: In Section 2, we present a time delay differential model for tumour-immune
system dynamics. In Sections 3, we determine the existence of possible steady states of the model. In Section 4, we study
local and global stability of the steady states and changes in the stability though the Hopf bifurcation analysis. In Section 5,
we study the identification of the parameters occur in the model when given real observations. We also use the sensitivity
functions to evaluate the sensitivity of the number of tumour cells with respect to the normal rate of the effector cells, death
rate of the effector cells and small changes in the time-lag parameter (see Section 6). In Section 7, we carry out some numer-
ical simulations and provide some biological interpretations. Summary and conclusions are then presented in Section 8.

2. The model

We first recall Kuznetsov et al.’s model [22] that describes the dynamics of tumour immune system interactions by incor-
porating a system of five ordinary differential equations (ODEs) model, then we reduce it into two equations but with time
delays. The model proposed in [22] describes the response of the Effector Cells (ECs) to the growth of Tumour Cells (TCs). In
this model, it has been taken into account the penetration of TCs by ECs, which simultaneously causes the inactivation of ECs.
It is assumed that interactions between ECs and TCs are in vitro such that �EðtÞ; �TðtÞ; �CðtÞ; �E�ðtÞ and �T�ðtÞ denote the local con-
centrations of ECs, TCs, EC–TC conjugates, inactivated ECs and ‘lethally hit’ TCs, respectively. The total population of unat-
tacked TCs is TtotðtÞ ¼ �TðtÞ þ �CðtÞ. The rate of binding of ECs to TCs and the rate of separation of ECs from TCs without
damaging them are denoted by k1 and k�1, respectively. The rate at which EC–TC integrations program for lysis is denoted
by k2 while the rate at which EC–TC interaction inactivate ECs is denoted by k3. The model takes the form:

d�EðtÞ
dt
¼ �rþ Fð�CðtÞ; �TðtÞÞ � d1

�EðtÞ � k1
�EðtÞ�TðtÞ þ ðk�1 þ k2Þ�CðtÞ;

d�TðtÞ
dt
¼ �a�TðtÞð1� �b�TtotðtÞÞ � k1

�EðtÞ�TðtÞ þ ðk�1 þ k3Þ�CðtÞ;

d�CðtÞ
dt
¼ k1

�EðtÞ�TðtÞ � ðk�1 þ k2 þ k3Þ�CðtÞ;

d�E�ðtÞ
dt

¼ k3
�CðtÞ � d2

�E�ðtÞ;

d�T�ðtÞ
dt

¼ k2
�CðtÞ � d3

�T�ðtÞ:

ð1Þ

Here, the parameter �r represents the normal rate (not increased by the presence of the tumour) of the flow of adult ECs into
the tumour side (region), Fð�CðtÞ; �TðtÞÞ ¼ Fð�EðtÞ; �TðtÞÞ > 0 (when �TðtÞ > 0) describes the accumulation of ECs in the tumour
side due to the presence of the tumour. While, d1; d2 and d3 are the coefficients of the processes of destruction and migration
of �E; �E� and �T�, respectively. The maximal growth of tumour is represented by the coefficient �a, and �b�1 is the environment
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