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a b s t r a c t

This paper focuses on Laplace and inverse Laplace transforms for approximation of Volterra
integral equations of the first kind with highly oscillatory Bessel kernels, where the explicit
formulae for the solution of the first kind integral equations are derived, from which the
integral equations can also be efficiently calculated by the Clenshaw–Curtis–Filon-type
methods. Furthermore, by applying the asymptotics of the solution, some simpler formulas
for approximating the solution for large values of the parameters are deduced. Preliminary
numerical results are presented based on the approximate formulae and the explicit for-
mulae, which are compared with the convolution quadrature and numerical inverse
Laplace transform methods. All these methods share that the costs the same independent
of large values of frequencies.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are concerned with the numerical solution of the Volterra integral equation of the first kind with a highly
oscillatory Bessel kernelZ x

0
Jmðxðx� tÞÞyðtÞdt ¼ f ðxÞ; x 2 ½0;1�; ð1:1Þ

where yðxÞ is the unknown function whose value is to be determined in the interval ½0;1�; f ðxÞ a given sufficiently
smooth function with f ð0Þ=0, Jm the Bessel function of the first kind and of nonnegative integer order m and x a large
parameter.

Equations of this type can arise from a retarded potential integral equation after their application of the continuous
Fourier transform, and its numerical solution has attracted much attention during the last few years (see, for instance,
[6,7,10] and the references therein). One feature of the Volterra integral Eq. (1.1) is of particular note: when x� 1, the
kernel function Jmðxðx� tÞÞ would become highly oscillatory. This means that the standard collocation method and
discontinuous Galerkin method may suffer from difficulty due to that the length scale associated with the space mesh is
too small, which will induce a large scale and ill-conditioned linear system [6,7,31]. It is also difficult to analyze the error
bounds since we know little about the asymptotics of the solution of (1.1) on x.
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The theoretical and numerical aspects of the Volterra integral equation of the first kindZ x

a
Kðx; tÞyðtÞdt ¼ f ðxÞ; x 2 ½a; b�; ð1:2Þ

have been investigated extensively. Numerical approaches for (1.2) have been constructed by replacing the integral by a
numerical quadrature formula (see, for example, [3,5,6,14,18,23]). However, they can not be applied to (1.1) since the kernel
JmðxxÞ is highly oscillatory for large values of x, therefore, the computation of the integral containing JmðxxÞ by standard
quadrature methods is exceedingly difficult and the cost steeply increases with x [16,17] (also see Fig. 1 in [15]). It has been
done for the special case m ¼ 0, where the unique solution can be written by Brunner et al. [7] as

yðxÞ ¼ f 0ðxÞ þx
Z x

0

J1ðxðtÞÞ
t

f ðx� tÞdt; x 2 ½0;1�; ð1:3Þ

which can be efficiently computed by the Filon-type quadrature [4,26,31–33,35].
Laplace transform for g : ½0;þ1Þ ! ð�1;þ1Þ denoted by

L½gðxÞ� ¼ egðpÞ ¼ Z 1

0
e�pxgðxÞdx

and inverse Laplace transforms denoted by

eL½egðpÞ� ¼ 1
2pi

Z cþ1i

c�1i
epxegðpÞdp

are particularly well suited to the study of convolution problems. An elementary and detailed discussion of transforms may
be found in [9,2,8,27].

If f ðxÞ at the right-hand side of (1.1) is well defined in ½0;þ1Þ, then by using Laplace transforms

L½JmðxxÞ� ¼ xmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þx2

p
ðpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þx2

p
Þm
; m > �1; ð1:4Þ

(see [2,27]), the solution of (1.1) can be represented by L½yðxÞ� � L½JmðxxÞ� ¼ L½f ðxÞ� and

L½yðxÞ� ¼ L½f ðxÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þx2

p
ðpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þx2

p
Þ

m

xm : ð1:5Þ

Then yðxÞ can be calculated by using numerical algorithms on inverse Laplace transforms if L½f ðxÞ� can be explicitly repre-
sented by some special functions. However, for general cases, L½f ðxÞ� is often unknown. Moreover, it is well-known that
numerical inversion of Laplace transforms is a notoriously ill-conditioned process [11,25].

The convolution quadrature method [19–21] can also be applied to solve (1.1). The approximate solution yk at x ¼ kh with
h ¼ 1=N is computed from the following linear systemXk

j¼1

wk�jyj ¼ f ðkhÞ; k ¼ 1;2; . . . ;N; ð1:6Þ

where the convolution quadrature weights wj are determined from their generating power series
P1

j¼1wjzj ¼ FðdðzÞ=hÞ. Here
FðpÞ is the Laplace transform of f ðxÞ, and dðzÞ is a given function such as dðzÞ ¼ 1� z or dðzÞ ¼ ð1� zÞ=ð1þ zÞ [21]. For Eq.
(1.1), the computation of the weights wj from the expansion L½JmðdðzÞ=hÞ� is very difficult especially for large values of n.

In this paper, we shall focus on efficient methods for the numerical solution of (1.1). In Section 2, we will derive explicit
formulae for the solution of (1.1). Based on the formulae, in Section 3, we establish the asymptotics of the solution, which
lead to simpler approximation of the solution for large values of x. Applying the approximation formula and explicit for-
mula, in Section 4, we will consider efficient algorithms for (1.1), and compare with numerical inverse Laplace algorithms
and convolution methods.

2. The explicit formula for the solution of (1.1)

For the Volterra linear equation of the first kind (1.2), it is well-known that

Lemma 2.1 ([5,12,14,23,27]). Assume that the functions f ðxÞ and Kðx; tÞ in (1.2) are continuous together with their first
derivatives on ½a; b� and on S ¼ fa 6 x 6 b; a 6 t 6 bg, respectively. If Kðx; xÞ – 0 (x 2 ½a; b�) and f ðaÞ ¼ 0, then there exists a
unique continuous solution yðxÞ of Eq. (1.2).

Furthermore, in the case the functions Kðx; tÞ and f ðxÞ are continuous and (1.2) has a unique solution, then the right-hand
side of (1.2) must satisfy the following conditions
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