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a b s t r a c t

In this paper, the exponential higher order compact (EHOC) finite difference schemes pro-
posed by Tian and Dai (2007) [10] for solving the one and two dimensional steady convec-
tion diffusion equations with constant or variable convection coefficients are extended to
the three dimensional case. The proposed EHOC scheme has the feature that it provides
very accurate solution (exact in case of constant convection coefficient in 1D) of the homo-
geneous equation that is responsible for the fundamental singularity of the homogeneous
solution while approximates the particular part of the solution by fourth order accuracy
over the nineteen point compact stencil. The key properties of this scheme are its stability,
accuracy and efficiency so that high gradients near the boundary layers can be effectively
resolved even on coarse uniform meshes. To validate the present EHOC method, three test
problems, mostly with boundary or internal layers are solved. Comparisons are made
between numerical results for the present EHOC scheme and other available methods in
the literature.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Convection–diffusion equation plays an important role in computational fluid dynamics (CFD) to simulate flow problems.
Therefore, accurate and stable difference representations of the convection–diffusion equations are of vital importance. It has
been known that the classical numerical methods on uniform grids give stable numerical solutions for singularly perturbed
convection–diffusion problems only if one uses a very large number of grid points. As a result, upwind techniques have been
proposed for solving convection–diffusion equations. However, they are less accurate and may not capture the sharp gradi-
ents in the solution. In the last two decades, higher order compact (HOC) finite difference (FD) schemes, which are compu-
tationally efficient, were developed. There are two types of higher order compact schemes, namely, HOC polynomial and
HOC exponential schemes. Several authors developed a number of HOC polynomial FD schemes for convection–diffusion
equations on uniform grids for two dimensional spaces [1–3] and three dimensional spaces [4–6]. However, the existing
HOC polynomial FD schemes are not suitable for particular physical problems, such as abrupt boundary layer in convec-
tion-dominated problems, unless a very fine mesh is used. This dilemma can be resolved by utilizing nonuniform mesh
or local mesh refinement strategies. Polynomial HOC on nonuniform grid have been developed by Kalita et al. [7] for 2D stea-
dy convection–diffusion equation and by Ge et al. [8] for solving 3D Poisson equation. However, in case of using nonuniform
grids, the boundary layer location or the singularity region must be known before the construction of the non-uniform grid.
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In contrast, the exponential HOC (EHOC) scheme has the noteworthy feature that it provides very accurate solution for
singular perturbation problems characterized by boundary and/or transition layers where the gradients of the solution
are large. Pillai [9] and Tian and Dai [10] developed a fourth order compact (4OC) exponential FD scheme for solving 1D
and 2D convection–diffusion equations with constant and variable convection coefficients on compact stencil. Mishra and
Yedida [11,12] developed a 6OC exponential FD scheme for solving 1D convection–diffusion equations with constant con-
vection coefficients and a 4OC exponential scheme for 2D equations.

The main aim of this work is to extend Tian and Dai’s work on EHOC schemes for solving 1D and 2D steady convection
diffusion equations to the 3D. This EHOC scheme produces fourth order accuracy even with variable convection coefficients
and source term. We start with the 1D case and prove that EHOC scheme produces exact solution in case of constant con-
vection coefficients and constant source term. Based on the EHOC scheme proposed for 1D, we derive the EHOC scheme for
3D convection–diffusion equation with variable coefficients. The numerical results of the present EHOC scheme are com-
pared with the numerical solutions of polynomial HOC [4]. The numerical results exhibit that the scheme proposed in the
present work agrees very closely with the exact solution and resolves efficiently the high gradients near the boundary layer
areas without refining the mesh.

The organization of this paper is as follows. Section 2 presents an EHOC scheme for 1D steady convection–diffusion equa-
tions. Brief extension to the 2D case is reviewed in Section 3. Section 4 presents the derivation details of an EHOC scheme for
3D steady convection–diffusion equation with constant convection coefficients. Then the EHOC scheme for variable convec-
tion coefficients is developed. Section 5 presents some numerical experiments to validate theoretical remarks and demon-
strates the effectiveness of the present method. Finally we draw conclusions in Section 6.

2. High-order compact exponential FD methods: 1D case

In this section we consider the steady one-dimensional non homogeneous convection–diffusion model problem

�auxx þ dðxÞux ¼ f ðxÞ ð1Þ

where the diffusion coefficient a is constant while the convection coefficient d and the source term f are sufficiently smooth
functions with respect to x. It is well known that Eq. (1) is a linear differential equation whose solution u(x) = uh(x) + up(x)
composes of two parts. The homogeneous part uh(x) is the general solution of the homogeneous equation �auxx + d(x)ux = 0
and is independent of the source function f. The second part is a particular solution up(x) that satisfies Eq. (1).

Let the domain of the problem 0 6 x 6 1 be divided uniformly into n intervals with mesh size h. The second order finite
difference of Eq. (1) is

�aD2
hui þ diDhui ¼ fi ð2Þ

where Dhui ¼ uiþ1�ui�1
2h , D2

hui ¼ uiþ1þui�1�2ui

h2 are the central difference approximations for the first and second derivatives, respec-
tively and ui = u(xi), xi = ih, i = 0, 1, ... , n. Although scheme defined by Eq. (2) is second order, for convection dominant case (a/
di� 1), the solution is very inaccurate since the scheme itself creates oscillatory solution. To avoid this, a small enough mesh
size h must be used. Another alternative is the application of upwind schemes. A notable disadvantage of upwind schemes is
the low order of approximation that they yield [[13], Section 2.2.4]. In a previous work [14], the oscillatory performance of
Galerkin method for convection diffusion problems at high Peclet numbers was analyzed and a modified diffusion coefficient
(MDC) technique that produces exact nodal solution was proposed for a class of 1D problems. Extending the MDC for other
classes of 2D convection diffusion equations, non oscillatory solution was obtained but only with second order accuracy. Our
main interest in this paper is to extend MDC to obtain high accuracy solution for 3D convection diffusion equation with var-
iable coefficients by making use of some ideas from EHOC schemes. In the last few years EHOC schemes were proposed to
solve convection dominant convection–diffusion equations efficiently in 2D ([10,12]). In this section we try to analyze and
understand the basics of MDC and EHOC techniques and hence interpret their efficiency (and sometimes exactness) of solu-
tions for convection–diffusion equations with boundary layers even on uniform grids.

2.1. Case 1: constant convection coefficient and constant right hand side

Consider the simple convection–diffusion equation with constant d and f.

�auxx þ dux ¼ f ð3Þ

The second order finite difference of Eq. (3) is

�aD2
hui þ dDhui ¼ f ð4Þ

For d – 0. It is easy to show that Eq. (3) has the exact solution

uðxÞ ¼ c1e
dx
a þ c2 þ

f
d

x ð5Þ

where c1 and c2 are arbitrary constants determined by the boundary conditions. The homogeneous solution is

uhðxÞ ¼ c1edx
a þ c2 while the particular solution is upðxÞ ¼ f

d x. It is important to note that, for convection dominated problems
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