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a b s t r a c t

The purpose of this paper is to establish the exact multiplicity and stability of solutions of
the equation u00 þ gðx;uÞ ¼ f ðxÞ with the Neumann boundary value conditions
u0ð0Þ ¼ u0ð1Þ ¼ 0. Exactly three ordered solutions are obtained by taking advantage of the
anti-maximum principle combined with the methods of upper and lower solutions. More-
over, we obtain that one of three solutions is negative, while the other two are positive, the
middle solution is unstable, and the remaining two are stable.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the exact multiplicity and stability of solutions for the Neumann boundary value problem

u00 þ gðx;uÞ ¼ f ðxÞ; x 2 ð0;1Þ;
u0ð0Þ ¼ u0ð1Þ ¼ 0;

�
ð1:1Þ

where f ðxÞ is a continuous function and gðx; uÞ is continuous and locally differentiable with respect to the second variable
with

g0ðx;uÞ � p2=4; for all x 2 ½0;1�;

namely, g0ðx;uÞ 6 p2=4, with the strict inequality on a set of positive measure.
The Neumann problem has played a significant role in mathematical physics (for example, equilibrium problems con-

cerning beams, columns, or strings and so on), and hence has attracted the attention of many researchers over the last
two decades. The existence and multiplicity of positive solutions for Neumann boundary value problem were investigated
by the fixed point theorems in [1,2]. Most of the results on the Neumann problem are about the unique solution, or the least
number of solutions in the previous literature. Relatively few studies have been written about the exact multiplicity of solu-
tions for (1.1). The method of lower and upper solutions coupled with the monotone iterative has been applied successfully
to obtain existence and approximation of solutions for Neumann boundary value problems classically when the lower solu-
tion is under the upper solution (see [3,4] and the references therein). The nonclassical case, i.e. the lower solution is over the
upper solution, has been treated in many papers, for instance in [5] the periodic case was considered, in [6] the Neumann
problem was studied. If the lower solution is over the upper solution, the monotone method is not valid in general. Anti-
maximum principle plays an important role in applying the method of lower and upper solutions, see [7] and references
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therein. In [8], the exact multiplicity and stability of periodic solutions of the Duffing equation with convex nonlinearity were
studied. More recently, in [9–11], the exact multiplicity and stability of periodic solutions under the effects of concave-con-
vex nonlinearity were investigated. In [12], the exact multiplicity of solutions was studied for the semipositone problems
with concave-convex nonlinearity. In this paper, the concavity and convexity of the nonlinearity are not required but only
the monotonicity of the nonlinearity is demanded. We obtain the stability and exact number of the positive and negative
solutions for the Neumann boundary value problem (1.1).

The organization of this paper is as follows: we shall introduce the main results in the rest of this section. In Section 2, we
present some useful preliminaries. Then in Section 3, the proof of the main results are given. In Section 4, one example is
presented to illustrate the main results.

Theorem 1.1. Let f ðxÞ > 0. Assume that the function gðx;uÞ satisfies the following conditions:

(i) there exists a < 0 < b < c such that gðx; aÞ ¼ gðx;0Þ ¼ gðx; cÞ ¼ 0; maxu2ð0;cÞ gðx;uÞ ¼ gðx; bÞ ¼ M for all x 2 ½0;1�;
limu!�1gðx;uÞ ¼ QðxÞ, uniformly in x 2 ½0;1� with QðxÞ > M > 0;

(ii) gðx;uÞ > 0 for u 2 ð�1; aÞ [ ð0; cÞ and gðx;uÞ < 0 for u 2 ða;0Þ for all x 2 ½0;1�;
(iii) g0ðx;uÞ < 0 for u 2 ð�1; aÞ [ ðb; cÞ and 0 < g0ðx; uÞ � p2=4 for u 2 ½0; b� and all x 2 ½0;1�.

Then

(1) (1.1) has no solution if f ðxÞ > QðxÞ for all x 2 ½0;1�;
(2) (1.1) has a unique solution that is negative and stable if QðxÞ > f ðxÞ > M for all x 2 ½0;1�;
(3) (1.1) has exactly three ordered solutions if 0 < f ðxÞ < M. Moreover, the minimal solution is negative and the other two are

positive; also, the middle solution is unstable and the remaining two are stable.

2. Preliminaries

Firstly, some notations are introduced for later use. Let l1ðsðxÞÞ < l2ðsðxÞÞ 6 l3ðsðxÞÞ 6 � � � all be eigenvalues of the
equation

u00 þ sðxÞuþ lu ¼ 0; x 2 ð0;1Þ;
u0ð0Þ ¼ u0ð1Þ ¼ 0:

(
ð2:1Þ

It is well known that the first eigenvalue l1ðsðxÞÞ is simple and the corresponding eigenfunction does not change sign. When
sðxÞ � 0, the first eigenvalue is equal to 0 and the second eigenvalue is equal to p2.

The stability of the solutions is also an important subject in our study.

Definition 2.1. [13]. Suppose that u is the solution of (1.1). Then u is stable if the principal eigenvalue l1ðg0ðx;uÞÞ of the
equation

u00 þ g0ðx;uÞu ¼ �lu; x 2 ð0;1Þ;
u0ð0Þ ¼ u0ð1Þ ¼ 0;

(

is strictly positive. The solution u is unstable if the principal eigenvalue l1ðg0ðx;uÞÞ is negative.
In order to apply the method of lower and upper solutions, the following anti-maximum principle is essential, which is

one of the important tools in this paper. Next we consider the nonhomogeneous differential equation

u00 þ sðxÞu ¼ f ðxÞ; x 2 ð0;1Þ;
u0ð0Þ ¼ u0ð1Þ ¼ 0:

(
ð2:2Þ

Lemma 2.1. Let f ðxÞ > 0 on ½0;1� and sðxÞ satisfy

sðxÞ � p2=4:

If uðxÞ is a solution of (2.2), then the following statements hold:

(1) either uðxÞ > 0 or uðxÞ < 0 for all x 2 ½0;1�;
(2) uðxÞ > 0 for all x 2 ½0;1�, if l1ðsðxÞÞ < 0;
(3) uðxÞ < 0 for all x 2 ½0;1�, if l1ðsðxÞÞ > 0.
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