Global behavior of the higher order rational Riccati difference equation

Azizi Raouf
University of Carthage, Faculty of Sciences of Bizerte, Department of Mathematics, 7021 Zarzouna, Tunisia

ARTICLE INFO

Keywords:

Higher order Riccati difference equation
Second order
Forbidden set
Periodic solutions
Asymptotic stability
Dense solutions

ABSTRACT

Let k be a positive integer and $a_{0}, a_{1}, \ldots, a_{k}$ be non-negative real numbers with $a_{k}>0$. We show that if $\operatorname{gcd}\left\{i ; a_{i-1}>0,1 \leqslant i \leqslant k+1\right\}=1$ then the rational Riccati difference equation of order k

$$
x_{n+1}=a_{0}+\frac{a_{1}}{x_{n}}+\frac{a_{2}}{x_{n} x_{n-1}}+\cdots+\frac{a_{k}}{x_{n} x_{n-1} \cdots x_{n-k+1}}, \quad n=0,1,2, \ldots
$$

has a unique positive equilibrium point that is stable and attracts all solutions with initial points outside a set of zero Lebesgue measure. This holds in particular if $a_{0}+a_{k-1}>0$. The case $k=3$ is studied in detail.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the rational Riccati difference equation of order $k(k \geqslant 1)$ defined by:

$$
\begin{equation*}
x_{n+1}=a_{0}+\frac{a_{1}}{x_{n}}+\frac{a_{2}}{x_{n} x_{n-1}}+\cdots+\frac{a_{k}}{x_{n} x_{n-1} \cdots x_{n-k+1}}, \quad n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

with initial values $x_{-k+1}, x_{-k+2}, \ldots, x_{0} \in \mathbb{R}$, and the parameters $a_{0}, a_{1}, \ldots, a_{k}$ are real numbers with $a_{k} \neq 0$.
If $k=1$ then Eq. (1.1) is reduced to the first order Riccati rational equation which has been studied thoroughly (see, for example, [1,3,5,6]). If $k=2$, Dehghan et al. [3] investigated Eq. (1.1) under the conditions $a_{0} \geqslant 0, a_{1} \geqslant 0, a_{0}+a_{1}>0, a_{2}>0$. They proved that the equation, in the stated range of parameters, had a positive fixed point that is stable and attracts all solutions having initial points outside a plane set of zero Lebesgue measure. The case $k=2$ with arbitrary real parameters a_{0}, a_{1}, a_{2} is studied by the author (see [1]). In the present paper, we study Eq. (1.1) for any order k and non-negative parameters. i.e. $a_{0}, a_{1}, \ldots, a_{k-1} \geqslant 0$ and $a_{k}>0$. In fact we prove a similar result to that in [3] concerning the existence of fixed solutions and their stability. So far, there have been no results for $k \geqslant 3$. It was only Sedaghat [7] who tried to study this equation for $k=3$ under specific conditions on parameters.

This paper is organized as follows: In Section 2, we transform Eq. (1.1) into a linear homogeneous difference equation $y_{n+1}=a_{0} y_{n}+a_{1} y_{n-1}+\cdots+a_{k} y_{n-k}$ through a change of variable $x_{n}=\frac{y_{n}}{y_{n-1}}$. The yielding linear equation is used to obtain a representation of solution of Eq. (1.1) and then to determine the forbidden set of Eq. (1.1). For some results on these sets see, for example, $[1,3,6,8]$. In Section 3, we describe the asymptotic behavior and stability proprieties of the solutions under the condition $\operatorname{gcd}\left\{i ; a_{i-1}>0,1 \leqslant i \leqslant k+1\right\}=1$. Finally, Section 4 is devoted to the case $k=3$, where we give a full study of the solutions of Eq. (1.1).

[^0]
2. The forbidden set

Similarly to the first and second order Riccati difference equations, Eq. (1.1) can be transformed into a linear difference equation

$$
\begin{equation*}
y_{n+1}=a_{0} y_{n}+a_{1} y_{n-1}+\cdots+a_{k} y_{n-k} \tag{2.1}
\end{equation*}
$$

of order $k+1$ through a change of variable $x_{n}=\frac{y_{n}}{y_{n-1}}$. If we define the initial values for Eq. (2.1) as $y_{-k}=1$ (or any fixed non-zero real number), $y_{-k+1}=x_{-k+1}, y_{-k+2}=x_{-k+2} x_{-k+1}, \ldots, y_{0}=x_{0} x_{-1} \cdots x_{-k+1}$, then we obtain a one-to-one correspondence between the solutions of Eq. (1.1) and those solutions of Eq. (2.1) that do not pass through the origin. The characteristic polynomial of Eq. (2.1) is

$$
P(X):=X^{k+1}-a_{0} X^{k}-a_{1} X^{k-1}-\cdots-a_{k}
$$

By basic linear theory, Eq. (2.1) can be solved explicitly and the solution $\left\{y_{n}\right\}_{n \geqslant-k}$ is expressed in terms of roots of P. The following proposition gives the general form of solution of Eq. (2.1) in terms of initial values $x_{-k+1}, x_{-k+2}, \ldots, x_{0}$.

Proposition 2.1. Let $\left\{y_{n}\left(x_{-k+1}, x_{-k+2}, \ldots, x_{0}\right)\right\}_{n \geqslant-k}$ be the solution of Eq. (2.1) with initial values

$$
y_{-k}=1, \quad y_{-k+1}=x_{-k+1}, \quad y_{-k+2}=x_{-k+2} x_{-k+1}, \ldots, \quad y_{0}=x_{0} x_{-1} \cdots x_{-k+1}
$$

Then

$$
y_{n}=\sum_{i=0}^{k-1} \beta_{i, n} x_{-i} x_{-i-1} \cdots x_{-k+1}+\beta_{k, n},
$$

where $\beta_{i, n}=\beta_{i, n}\left(a_{0}, a_{1}, \ldots, a_{k}\right), 0 \leqslant i \leqslant n$.
Proof. We let $Y_{n}=\left(\begin{array}{c}y_{n} \\ y_{n-1} \\ \vdots \\ y_{n-k}\end{array}\right)$. We have

$$
Y_{n+1}=\left(\begin{array}{c}
y_{n+1} \\
y_{n} \\
\vdots \\
y_{n-k+1}
\end{array}\right)=\left(\begin{array}{c}
a_{0} y_{n}+a_{1} y_{n-1}+\cdots+a_{k} y_{n-k} \\
y_{n} \\
\vdots \\
y_{n-k+1}
\end{array}\right)=A Y_{n}
$$

where

$$
A=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{k} \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

Hence $Y_{n}=A^{n} Y_{0}=A^{n}\left(\begin{array}{c}x_{0} x_{-1} \cdots x_{-k+1} \\ x_{-1} x_{-2} \cdots x_{-k+1} \\ \vdots \\ x_{-k+1} \\ 1\end{array}\right)$. Now set $A^{n}=\left(\begin{array}{cccc}\beta_{0, n} & \beta_{1, n} & \cdots & \beta_{k, n} \\ \vdots & \vdots & \vdots & \vdots\end{array}\right)$. It follows that

$$
y_{n}=\sum_{i=0}^{k-1} \beta_{i, n} x_{-i} x_{-i-1} \cdots x_{-k+1}+\beta_{k, n} .
$$

The forbidden set of Eq. (1.1) can be written as

$$
\mathcal{F}=\bigcup_{n \geqslant-k}\left\{\left(x_{-k+1}, x_{-k+2}, \ldots, x_{0}\right) \in \mathbb{R}^{k} ; y_{n}\left(x_{-k+1}, x_{-k+2}, \ldots, x_{0}\right)=0\right\} .
$$

The next result is an immediate consequence of Proposition 2.1.
Proposition 2.2. The forbidden set of Eq. (1.1) is given by

$$
\mathcal{F}=\bigcup_{n \geqslant-k}\left\{\left(x_{-k+1}, \ldots, x_{0}\right) \in \mathbb{R}^{k} ; \sum_{i=0}^{k-1} \beta_{i, n} x_{-i} x_{-i-1} \cdots x_{-k+1}+\beta_{k, n}=0\right\}
$$

https://daneshyari.com/en/article/4628119

Download Persian Version:

https://daneshyari.com/article/4628119

Daneshyari.com

[^0]: E-mail address: araoufazizi@gmail.com

