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a b s t r a c t

In this paper, an epidemic model involving a nonlinear birth in population and vertical
transmission was studied. When R0 < 1, the disease-free equilibrium was stable, while if
R0 > 1, the disease-free equilibrium was unstable. We researched the existence of Hopf
bifurcation and obtained the stability and direction of the Hopf bifurcation by using the
normal theory and the center manifold theorem. Numerical simulations were carried out
to illustrate the main theoretical results and a brief discussion was given to conclude this
work.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical epidemiology, i.e. the construction and analysis of mathematical models are one of the major areas of biol-
ogy to describe the spread and control of infectious diseases. Since Kermack and Mckendrick constructed a system of ODE [1]
to study epidemiology in 1927, the concept of ‘‘Compartment model’’ have been used until now. Most of the research liter-
atures described the spread of a non-lethal disease in a large population by dividing the total population into three classes:
the susceptible (S), the infectious (I), and the recovered (i.e. with a permanent or temporary acquired immunity) (R). We usu-
ally call these compartmental models SIR models or SIRS models, and each letter in SIR or SIRS denotes a compartment. And
there must be an individual belong to one compartment.

In real life, some diseases may be passed from one individual to another via vertical transmission. That is to say, vertical
transmission of diseases refer to diseases are infected to the offspring by their infected parentage. In recent years, a few stud-
ies of vertical transmission have been conducted to describe the effects of various and demographical factors [2–5]. For
example, Busenberg and Cooke [5] discussed a variety of diseases which contained both of horizontally and vertically trans-
mitting, a comprehensive and formulation survey. They also provided the mathematical analysis of compartmental models
including vertical transmission. Some examples of such diseases are AIDS, Rubella, Hepatitis, etc.

2. The model

Classical epidemic models assume that the total population size is constant, and that concentrate on describing the
spread of disease based on the population. In recent years more and more models pay attention to a variable population size,
and then disease causing death for a longer time scale should be taken into account to reduce reproduction. For example,
according to the paper [6], a nonlinear birth term BðNÞ is considered and we can also find that the form BðNÞN is important
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in determining the qualitative dynamics. In the absence of disease, the paper [7] assumes that the total population size N
changes according to a population growth equation

dNðtÞ
dt

¼ BðNÞN � dN:

Here d > 0 is the death rate constant, and BðNÞN is a birth rate function with BðNÞ satisfying with following basic assump-
tions for N 2 ð0;1Þ:

(A1) BðNÞ > 0;
(A2) BðNÞ is continuously differentiable with B0ðNÞ < 0;
(A3) Bð0þÞ > d > Bð1Þ.

Based on the above description, we choose a BðNÞ ¼ A
N þ B. It is clear that BðNÞmeets (A1) and (A2). Because of (A3), we can

choose B;l ¼ minfl1;l2;l3g satisfying B < l. Under these assumptions, the following epidemic model is considered as one
model with nonlinear birth in population and nonlinear incidence.

dSðtÞ
dt ¼ A� ðl1 � BÞSðtÞ þ BqIðtÞ þ BRðtÞ � bSðtÞIðtÞ

1þaIðtÞ þ ce�l3sIðt � sÞ;
dIðtÞ

dt ¼
bSðtÞIðtÞ
1þaIðtÞ þ BpIðtÞ � ðcþ l2ÞIðtÞ;

dRðtÞ
dt ¼ cIðtÞ � l3RðtÞ � ce�l3sIðt � sÞ;

8>><>>: ð2:1Þ

where A;B;liði ¼ 1;2;3Þ; q; p; b;a; c are nonnegative. SðtÞ; IðtÞ;RðtÞ denote the number of susceptible, infected and recover
population stage at time t, respectively. A is constant immigrants, B is the birth rate and liði ¼ 1;2;3Þ are natural death rate.
q is the probability that a child who is born from infectious mother is susceptible; p is the probability that a child who is born
from infectious mother is infected, then pþ q ¼ 1. b is contact rate between the susceptible and the infection. c is the recov-
ery rate. s is the time delay.

The initial conditions for system (2.1) are

ðw1ðhÞ;w2ðhÞ;w2ðhÞÞ 2 Cþ ¼ Cð½�s; 0�;R3
þÞ; wið0Þ > 0; i ¼ 1;2;3; ð2:2Þ

where

R3
þ ¼ fðx1; x2; x3Þ 2 R3 : xi P 0; i ¼ 1;2;3g:

Theorem 2.1. For any solution SðtÞ; IðtÞ;RðtÞ of system (2.1) with initial conditions (2.2), SðtÞ < M, IðtÞ < M;RðtÞ < M for all large
t, where M ¼ A

l�B. h

This paper is organized as following: in the next section, we obtain the basic reproduction number by the next generation
method and the existence of equilibriums. We verify when R0 < 1, the disease-free equilibrium was stable, while if R0 > 1,
the disease-free equilibrium was unstable. Then we focus on the local stability of the endemic equilibrium and the existence
of the Hopf bifurcation. In Section 4, we obtain the stability and direction of the Hopf bifurcation by using the normal theory
and the center manifold theorem. Numerical simulations are carried out in Section 5 to illustrate the main theoretical results
and a brief discussion is given in last part to conclude this work.

3. The existence and stability of equilibria

3.1. The existence of equilibria and the stability of the disease-free equilibrium

It is easy to obtain the disease-free equilibrium E0 ¼ ðS0;0;0Þ ¼ A
l1�B ;0;0
� �

. Then, we define the basic reproduction num-

ber R0 of our model by directly using the next generation method presented in Diekmann et al. [8] and van den Driessche

and Watmough [9].
Then

R0 ¼
bA

ðl1 � BÞðl2 þ c� BpÞ :

Theorem 3.1. When R0 < 1, there exists the unique disease-free equilibrium E0. When R0 > 1, there also exist a endemic

equilibrium E� ¼ ðS�ðsÞ; I�ðsÞ;R�ðsÞÞ, where S�ðsÞ ¼ ðl2þc�BpÞð1þaI�Þ
b , R�ðsÞ ¼ cI�

b3
ð1� e�l3sÞ and I�ðsÞ ¼

½bA�ðl1�BÞðl2þc�BpÞ�l3
al3ðl1�BÞðl2þc�BpÞþbcBð1þe�l3sÞþbl3ðl2�BÞþbcl3ð1�e�l3sÞ.
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