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1. Introduction and summary

Volterra integral equations are a special type of integral equations introduced by Vito Volterra. They have applications in
demography, the study of viscoelastic materials, and in insurance mathematics through the renewal equation. There has
been a great deal of developments on the theory and applications of Volterra integral equations. For most excellent and com-
prehensive accounts, we refer the readers to [1-5,7]. One of the most recent developments on Volterra integral equations is
described in [9].

In this paper, we show how to obtain solutions, f, to the linear integral equation

ef-xf=g (1.1)
on Q c CP, where € liesin C, f and g: Q — CY,
#1060 = [ Koy)f(w)dy.
X

where T C CP satisfies QT c Q and K: Q x Q — C9? can be expanded as

X"Kq (1) (1.2)

NgE

K(x, xt) =

n=I-1

for x in Q,tin T,XT = {xt: tin T},QT = {xt: xin Q, tin T},Xt = (X;t1,...,X,t,), X¥ =¥} --.x? for x and y in C? with 0° = 1.
Alsox > yin RP meansx; > y;for 1 <i< p,x#ymeansx > yisfalse,I —1is an integer in R’ and summationin (1.2) is over
integers in R? withn > 1 - 1.

Note that for a Volterra kernel T = (0, 1). For a Fredholm kernel on Q = (0, ) or R?, T = Q. The major assumption is that
forn>1-1

Ka(u) = / Kq(O)t"dt exists and is finite (1.3)
T
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for certain u in C? determined by g. This rules out analytic Fredholm kernels on C? or (0, o) but not analytic Volterra kernels.
Since

1
/ 1 —t)'tdt = o,
0

it also rules out the Abel kernel (x —y)~".

The results of the paper are organized as follows. In Section 2, it is shown that subject to certain conditions (1.1) has a
unique series solution with the coefficients being given by a simple iterative formula.

Section 3 gives a power series for the resolvent of K - and so provides an alternative solution to (1.1) when € # 0.

Section 4 gives solutions of Frobenius type x"3 "’ (X"f, to the homogeneous equation ef — #f =0whene=00rI<0:u
may be any solution in C? of

det (elq —k,4 (u)) =0 if 1=0, (1.4)
where I, is the q x g identity matrix, or of
detk;_1(u) =0 (1.5)

ife=0o0rI<0##L It is interesting to note that f = »#'f has such solutions if and only if I < 0. So, it is the singularity of
K(x,xt) not of K(x,y) that allows for a solution. Further K(x, xt) must be singular with respect to every x variable. By contrast
o f =0 will always have a solution if (1.5) can be satisfied. For example, for the Volterra kernel ix¢(x —y)"' with i > 0,
60> 0and p=q=1,f=xf has exactly one such solution while #f = 0 has none.

Section 5 gives a class of kernel transformable to type (1.2), for example, the Volterra kernel (x — y)’ with 0 > —1. Section
6 indicates extensions to other types of kernels. Section 7 discusses some non-trivial examples of the results in Sections 2 to
6.

The following notation will be used throughout the paper:

k(u) = / k(t)t"dt for u in C* and k with domain T,
T

n! =n;!---np! for nin NP,

X+1)!=T(x)=T(x;)---T'(x,) for x in CP,

B(x,y) = T(X)I'(y)/T(X+Y) = B(x1,y;) - - B(xp,¥,) for X,y in C?,
logx = (logx;,...,logx,) for x in CP,

I(A) =1 if A is true and O if A is false,

p
[[i=1forp=o,

j=1

]
> =0unless1<],

J
> sumsover {n:I<n<]Jn#I},
n=I+

_'7
> sumsover {n:I<n<]Jn#J},
n=I

J
>~ sums over {n:0<n<]J,n#0}
n=0,

and
I. = max(0,I), I. = max(0, —I) componentwise.

So,I=1, —I.
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