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a b s t r a c t

A general compartmental model of disease transmission is studied. The generality comes
from the fact that new infections may enter any of the infectious classes and that there
is an ordering of the infectious classes so that individuals can be permitted (or not) to pass
from one class to the next. The model includes staged progression, differential infectivity,
and combinations of the two as special cases.

The exact etiology of feline infectious peritonitis and its connection to coronavirus is
unclear, with two competing theories – mutation process vs multiple virus strains. We
apply the model to each of these theories, showing that in either case, one should expect
traditional threshold dynamics. A further application to tuberculosis with multiple
progression routes through latency is also presented.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study a model of infectious disease transmission that is flexible enough to allow for staged progression
[3], differential infectivity [6] or some combination of the two. The system also allows for fast and slow progression to infec-
tivity, as is sometimes included in models of tuberculosis [1,8].

An important benefit in being able to study such a general model is that it allows analysis to be performed in the presence
of uncertainty in the underlying etiology of a disease, as is the case with feline infectious peritonitis.

Feline coronavirus (FCoV) infection is ubiquitous amongst domestic and feral cats [9]. Cats that are infected with FCoV are
usually asymptomatic; for those that are symptomatic, the clinical signs are mild [2].

Feline infectious peritonitis (FIP) is a fatal disease that affects cats and is associated with FCoV infection [9]. Although
FCoV infection is common, not all FCoV infected cats develop FIP [9]. Although the exact etiology is not completely under-
stood, there are two theories that are currently being debated amongst biologists [9].

One theory is that once FCoV infection occurs, it has the potential to mutate within the host. After mutation, the result is
feline infectious peritonitis virus (FIPV) which then causes FIP [10].

The alternative theory is that there are virulent and avirulent strains of the coronavirus circulating in the feline popula-
tion [2]. The virulent strain manifests itself as FIPV giving rise to the fatal condition, FIP. The avirulent strain causes mild
enteritis and is relatively harmless.

In either case, FIPV itself is not transmitted from cat to cat. Although FIPV can be isolated in feces, it is shed at very low
levels [9]. Hence, the main focus of research rests upon investigating the primary FCoV infection, which is readily and com-
monly transmitted with the potential for FIP.

The mathematical system studied here is presented in Section 2, with preliminary analysis given in Section 3. Mathemat-
ical theorems related to global dynamics are stated in Section 4, with the proofs appearing in the appendices. Special cases of
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the model, including staged progression, differential infectivity and a combination of the two are discussed in Section 5.
Applications to feline infectious peritonitis and tuberculosis, are studied in Section 6. The results are discussed in Section 7.

2. The model

A population is divided into susceptibles S and infectives. The infective population is further divided into n subgroups
I1, . . ., In based on the disease status of the individuals.

All recruitment of new individuals is assumed to be into the susceptible class. Thus, there is no vertical transmission and
no immigration of infectives. This recruitment occurs at the constant rate K > 0.

Mass action incidence is assumed, but it is allowed that the different infective classes may have different levels of infec-
tivity. Thus, individuals leave the susceptible class due to infections at rate

Pn
m¼1bmSIm. We assume that bm P 0, for

m ¼ 1; . . . ;n, and that b1 þ � � � þ bn > 0. For j ¼ 1; . . . ;n, a fraction qj of the new infections appear in class Ij, where
qj 2 ½0;1�, and q1 þ � � � þ qn 6 1. (Normally, we would have equality here, but we allow that a fraction of the new infections
may result in rapid death, and therefore the sum may be less than one.)

For j ¼ 1; . . . ;n� 1, individuals in class Ij may progress to class Ijþ1 with per capita rate coefficient kj P 0. Thus, for those
that leave Ij by progressing rather than by dying, the average time spent in Ij before progression occurs is 1

kj
61.

We assume that q1 > 0 and that qj þ kj�1 > 0 for j ¼ 2; . . . ;n. This ensures that there is a mechanism by which individuals
can enter each of the infective classes.

The per capita death rate coefficient for susceptibles is l > 0 and for infective class Ij is dj P l, for j ¼ 1; . . . ;n. We obtain
the following system of ordinary differential equations:

dS
dt
¼ K� lS�

Xn

m¼1

bmSIm;

dIj

dt
¼ qj

Xn

m¼1

bmSIm þ kj�1Ij�1 � ðkj þ djÞIj; for j ¼ 1; . . . ;n;

ð2:1Þ

where k0 ¼ I0 ¼ 0, so that the identically zero term k0I0 in the equation for dI1
dt is permitted for notational convenience.

It is useful, at times, to rewrite Eq. (2.1) in a more concise form. To do this, we define �I ¼ I1; . . . ; In½ �T ;C �I
� �
¼
Pn

m¼1bmIm,
�Q ¼ q1; . . . ; qn½ �T and

M ¼

k1 þ d1

�k1 k2 þ d2

�k2 k3 þ d3

. .
. . .

.

�kn�1 kn þ dn

2
66666664

3
77777775

n�n

;

where each of the omitted entries is zero. We note that M is invertible and that M�1 is a non-negative lower triangular matrix
[5, Theorem 2.5.3].

Then Eq. (2.1) takes the form

dS
dt
¼ K� lS� SC �I

� �
;

d�I
dt
¼ SC �I

� �
�Q �M�I:

ð2:2Þ

The following transfer diagram describes the flow of individuals between the compartments.

Standard theory implies that solutions exist for all time and are unique.
Let D # Rnþ1

P0 be defined by D ¼ S; I1; . . . ; Inð Þ 2 Rnþ1
P0 : Sþ I1 þ � � � þ In 6

K
l

n o
.

474 J. Nadeau, C.C. McCluskey / Applied Mathematics and Computation 230 (2014) 473–483



Download English Version:

https://daneshyari.com/en/article/4628158

Download Persian Version:

https://daneshyari.com/article/4628158

Daneshyari.com

https://daneshyari.com/en/article/4628158
https://daneshyari.com/article/4628158
https://daneshyari.com

