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a b s t r a c t

The transformed rational function method provides a systematical and convenient
handling of the solution process of nonlinear equations, unifying the tanh function type
methods, the homogeneous balance method, the exp-function method, the mapping
method, and the F-expansion type methods. In this paper, the transformed rational func-
tion method is improved and the extended method is used to obtain complexiton solutions
to some nonlinear differential equations.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

It is important to seek more exact traveling wave solutions of nonlinear differential equations of mathematics phys-
ics. A vast variety of powerful and direct methods to find various kinds of analytical solutions of nonlinear differential
equations have been developed, which include the tanh function method [1], the sech-function method [2], the homo-
geneous balance method [3], the extended tanh function method [4–7], the tanh-coth method [8] and F-expansion meth-
od [9]. Recently, a direct and systematical approach, namely the transformed rational function method, was presented to
seek to exact solutions of nonlinear equations by using rational function transformations in [10]. The method is very
suitable for an easier and more effective handling of the solution process of nonlinear equations, unifying the existing
solution methods mentioned above. Its key point is to find rational solutions to variable-coefficient ordinary differential
equation transformed from given nonlinear partial differential equation. In [10], this method was applied to the (3 + 1)-
dimensional Jimbo–Miwa equation and some exact traveling wave solutions, which include those solutions obtained by
other methods.

In [11,12], a novel class of explicit exact solutions to the Korteweg–de Vries equation was presented through its bilinear
form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves
which have different traveling speeds of new type. It was named complexiton solutions in the literature. This type of solu-
tions would help us in recognizing a great diversity of motions of nonlinear waves described by soliton equations.

In this paper, we would like to improve the transformed rational function method so that this method can be used to seek
complexiton solutions to nonlinear equations.

This paper is arranged as follows. In Section 2, an extended transformed rational function method is proposed. In Sec-
tion 3, some applications are illustrated. Finally, in Section 4, some conclusions are given.
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2. Extended transformed rational function method

The transformed rational function method was presented in Ref.[10]. This method was used to seek traveling wave solu-
tions of nonlinear equations. The general steps can be briefly described as follows.

Let us begin with a given partial differential equation

Pðu;ux;ut ;uxx; . . .Þ ¼ 0: ð1Þ

Step 1: We seek traveling wave solutions of Eq. (1) in the following form:

u ¼ uðnÞ; n ¼ kðx� ctÞ; ð2Þ

where k and c are real constants to be determined. Under the transformation (2), Eq. (1) becomes an ordinary differential
equation

Pðu; ku0;�kcu0; k2u00; . . .Þ ¼ 0; ð3Þ

where u0 ¼ du
dn.

Step 2: We search for traveling wave solutions determined by

uðrÞðnÞ ¼ vðgÞ ¼ pðgÞ
qðgÞ ¼

pmgm þ pm�1gðm�1Þ þ � � � þ p0

qngn þ qn�1gðn�1Þ þ � � � þ q0
; ð4Þ

where pðgÞ and qðgÞ are polynomials, r > 0 represents the minimal differential number in (3).
An important step in the solution process is to introduce a new variable g ¼ gðnÞ by a solvable ordinary differential equa-

tion, for example, a first-order differential equation:

g0 ¼ T ¼ Tðn;gÞ; ð5Þ

where T is a function of n and g, and the prime denotes the derivative with respect to n.
Thus, we obtain

duðrÞðnÞ
dn

¼ T
dv
dg

;
duðrþ1ÞðnÞ

dn
¼ T2 d2v

dg2 þ T 0
dv
dg

; . . . ð6Þ

Then we just need to force the numerator of the resulting rational function in the transformed equation to be zero. This
yields a system of algebraic equations.

Step 3: We may obtain traveling wave solutions to Eq. (1) after solving the above mentioned algebraic equations in Step 2.
In Ref.[10], it is showed that the transformed rational function method will be the exp-function method if we choose

g0 ¼ g and g ¼ en and that the transformed rational function method will be the extended tanh-function method if we choose
g0 ¼ aþ g2, where a is a constant. It is obvious that the transformed rational function method unifies the existing methods
using tanh-function type functions, tan-function type functions and the exponential functions.

However, it is not appropriate to construct complexiton solutions to nonlinear equations, since complexiton solutions
have different traveling wave speeds of new type. In order to obtain complexiton solutions, we improve the transformed ra-
tional function method as follows.

Let us talk about a given partial differential equation (1).
Step 1: Suppose Eq. (1) has a Hirota bilinear form:

HðDx;Dt; . . .Þf � f ¼ 0; ð7Þ

where Dx;Dt , . . ., are Hirota’s differential operators defined by

Dp
yf ðyÞ � gðyÞ ¼ ð@y � @y0 Þpf ðyÞgðy0Þjy0¼y ¼ @

p
y0 f ðyþ y0Þgðy� y0Þjy0¼0; p P 1: ð8Þ

Step 2: Suppose

f ¼ pðg1;g2Þ
qðg1;g2Þ

; ð9Þ

where pðg1;g2Þ and qðg1;g2Þ are polynomials and g1 and g2 admit, for example,

g001 ¼
d2g1

dn2
1

¼ �g1; ð10Þ

g002 ¼
d2g2

dn2
2

¼ g2; ð11Þ
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