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a b s t r a c t

This paper develops the residue harmonic balance solution procedure to predict the bifur-
cated periodic solutions of some autonomous delay differential systems at and after Hopf
bifurcation. In this solution procedure, the zeroth-order solution employs just one Fourier
term. The unbalanced residues due to Fourier truncation are considered by solving linear
equation iteratively to improve the accuracy. The number of Fourier terms is increased
automatically. The well-known sunflower equation and van der Pol equation with unit
delay are given as numerical examples. Their solutions are verified for a wide range of sys-
tem parameters. Comparison with those available shows that the residue harmonic bal-
ance method is effective to solve the autonomous delay differential equations. Moreover,
the present method works not only in determining the amplitude but also the frequency
at bifurcation.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decades, the study of delay differential equations in science and engineering such as electronics [1], optics
[2], biology [3], and mechanics [4] is rather extensive. A nontrivial periodic solution of a homogeneous ordinary differential
equation can give rise to a Hopf bifurcation when an eigenvalue crosses the imaginary axis from left to right which corre-
sponds to a physical parameter passing through a critical value [5]. Likewise, for delay differential equation, a general
description of Hopf bifurcation can be found in and the existence can be determined from the linear stability analysis
[5–8]. The new bifurcated branch can be found after the Hopf bifurcation to a steady state solution by means of the center
manifold theory [6]. However, it is in general tedious to obtain good accurate periodic solutions for some nonlinear delay
differential systems. As a result, many efforts have been made to find their approximate solutions [9–26,34,35]. The singular
perturbation methods such as the method of averaging [9,10] multiple scales [10–12] Poincaré–Lindstedt method [12–14],
Krylov–Bogoliubov–Mitropolskii method [14] have been proposed to study the delay differential equations. Compared with
the center manifold reduction, the singular perturbation methods can yield accurate results for weakly nonlinear system.
However, the singular perturbation methods are restricted to the small (or large) parameter assumption. In recent years,
the homotopy perturbation, homotopy analysis [16–18] perturbation incremental [19,20], variational iteration [21–23]
and pseudo-oscillator analysis [10,24–26] are the most widely used methods to solve the delay differential equation. Each
of the methods has advantages over the others.
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When the steady state periodic solution is concerned, two categories of solution methods are available without the
assumption of small nonlinearity. One is to integrate it numerically for a variety of initial conditions using one of the
time-difference methods [27,28]. Very often, a large number of time steps is required to reach the steady state and different
initial conditions are necessary to find different solution branches. Some solutions may be missed completely and the exact
locations of the bifurcation points cannot be determined accurately due to numerical stability problems. Another category is
the Galerkin technique including the harmonic balance method [29] and several of its variants [30–33].The harmonic bal-
ance technique has been applied to obtain the lower Fourier order solutions for some special cases in the earlier researches
of delay differential equations [34,35]. However, it is usually difficult to achieve higher-order analytical harmonic solutions.
Although, the Newton-harmonic balance [32,33] has been successful to obtain higher-order harmonic approximations to
some autonomous ordinary differential equations by linearization and Newton iteration. To the best knowledge of the
authors, there has not been reported on the application of Newton-harmonic balance to delay differential equation. When
seeking a solution in series form, the number of terms to get a satisfactory solution is not usually known in advance. The
solution process is required to repeat if the number of terms changes. Here, a hierarchical formulation is proposed so that
when an approximation is available, the number of terms can be increased automatically by solving a set of linear equations.
The solution of the linear equations is rather straight forwards. When applying to harmonic balance for periodic solutions,
the residue harmonic balance method [36,37] has been successfully applied to ordinary differential equations and fractional
order oscillator systems. In this paper, we will extend it to delay differential equation.

This paper aims at presenting a general framework of the residue harmonic balance method for calculating the periodic
solutions of delay differential equations. It begins in Section 2 with a description of the residue harmonic balance method for
autonomous delay differential equation and the procedure of various orders solutions. In Section 3, the numerical examples
of sunflower equation and van der Pol equation with unit delay are discussed and compared. Finally, we summarize our
results with a conclusion in Section 4.

2. Residue harmonic balance approximations for autonomous delay differential systems

Consider the following a class of second order autonomous delay differential equations

u00ðtÞ ¼ Fðu;u0;us;u0s; kÞ ð1Þ

where us ¼ uðt � sÞ; u0s ¼ u0ðt � sÞ; and s > 0 is the delay. A prime over a function denotes differentiation with respect to
its argument. F is sufficiently differentiable and has the symmetry conditions

Fð0;0;0;0; kÞ ¼ 0; Fð�u;�u0;�us;�u0s; kÞ ¼ �Fðu;u0;us;u0s; kÞ ð2Þ

Eq. (1) is assumed to admit a Hopf bifurcation at k ¼ k0. The existence of the bifurcation can be characterized by the loca-
tion of the root of the characteristic function of the linear part of Eq. (1) at u ¼ 0. In this paper, we investigate the bifurcated
periodic solution after the Hopf bifurcation. Since the period is unknown, we normalize the period to 2p by introducing a
time transformation x ¼ xt where the frequency x is to be determined. Then we put Eq. (1) in the form

x2€uðxÞ ¼ Fðu;x _u;usx;x _usx; kÞ ð3Þ

where the over dot represents differentiation with respect to x. We are required to determine both the frequency and
amplitude of the bifurcated periodic solution. The residue harmonic balance method is extended for purpose. The method
of homotopy requires a bookkeeping parameter p with values in the interval [0,1] and assumes the solution in the form

uðxÞ ¼ u0ðxÞ þ pu1ðxÞ þ p2u2ðxÞ þ . . . ;

x ¼ x0 þ px1 þ p2x2 þ . . .
ð4Þ

where xi and uiði ¼ 0;1;2; . . .Þ are unknowns to be determined. From condition (2), the unknown functions ukðxÞ can be ex-
pressed in Fourier series

ukðxÞ ¼
Xk

j¼0

fa2jþ1;k cos½ð2jþ 1Þx� þ b2jþ1;k sin½ð2jþ 1Þx�g; k ¼ 0;1;2; . . . ; ð5Þ

and

ukðx� sxÞ ¼
Xk

j¼0

fa2jþ1;k cos½ð2jþ 1Þsx� � b2jþ1;k sin½ð2jþ 1Þsxg cos½ð2jþ 1Þx� þ
Xk

j¼0

fa2jþ1;k sin½ð2jþ 1Þsx�

þ b2jþ1;k cos½ð2jþ 1Þsxg sin½ð2jþ 1Þx�; k ¼ 0;1;2; . . . ;

where the second subscripts of coefficients a and b denote the order of corrections so that at p ¼ 1; the mth-order solutions
are given by

uðmÞðxÞ ¼
Xm

k¼0

ukðxÞ; xðmÞ ¼
Xm

k¼0

xk: ð6Þ
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