
A phase adaptive cache hierarchy for SMT processors

Sonia López a,⇑, Óscar Garnica d, David H. Albonesi b, Steven Dropsho c, Juan Lanchares d, José I. Hidalgo d

a Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY, USA
b Computer Systems Laboratory, Cornell University, Ithaca, NY, USA
c Google Inc., Zurich, Switzerland
d Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Spain

a r t i c l e i n f o

Article history:
Available online 31 August 2011

Keywords:
Adaptive caches
Reconfigurable caches
Cache memories
GALS
Simultaneous Multi-Threading

a b s t r a c t

Resizable caches can trade-off capacity for access speed to dynamically match the needs of the workload.
In single-threaded cores, resizable caches have demonstrated their ability to improve processor perfor-
mance by adapting to the phases of the running application. In Simultaneous Multi-Threaded (SMT)
cores, the caching needs can vary greatly across the number of threads and their characteristics, thus,
offering even more opportunities to dynamically adjust cache resources to the workload.

In this paper, we demonstrate that the preferred control methodology for data cache reconfiguring in a
SMT core changes as the number of running threads increases. In workloads with one or two threads, the
resizable cache control algorithm should optimize for cache miss behavior because misses typically form
the critical path. In contrast, with several independent threads running, we show that optimizing for
cache hit behavior has more impact, since large SMT workloads have other threads to run during a cache
miss. Moreover, we demonstrate that these seemingly diametrically opposed policies are closely related
mathematically; the former minimizes the arithmetic mean cache access time (which we will call AMAT),
while the latter minimizes its harmonic mean. We introduce an algorithm (HAMAT) that smoothly and
naturally adjusts between the two strategies with the degree of multi-threading.

We extend a previously proposed Globally Asynchronous, Locally Synchronous (GALS) processor core
with SMT support and dynamically resizable caches. We show that the HAMAT algorithm significantly
outperforms the AMAT algorithm on four-thread workloads while matching its performance on one
and two thread workloads. Moreover, HAMAT achieves overall performance improvements of 18.7%,
10.1%, and 14.2% on one, two, and four thread workloads, respectively, over the best fixed-configuration
cache design.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Simultaneous Multi-Threading (SMT) [1,2] is a widely used ap-
proach to increase the efficiency of the processor core. SMT designs
enable multiple threads to simultaneously share many of the major
hardware resources, thereby making use of resources that may lie
partially unused when running a single thread. SMT processors
have the advantage of dynamically trading off instruction-level
parallelism (ILP) for thread-level parallelism (TLP). That is, hard-
ware resources that are partially unoccupied due to insufficient
single-thread ILP can be used by instructions from other threads.
Thus, the SMT approach attacks two important sources of limited
throughput: long latency operations (such as accesses to the exter-
nal memory) and limited per thread parallelism. This leads to a sig-

nificant boost in instruction throughput over a single-threaded
processor with only a modest increase in hardware resources [3].

However, the threads sharing the resources compete for those
resources. Depending on the phase of the execution and the needs
of each thread, this competition might cause thread resource
starvation; that is, one thread may monopolize the resources, not
allowing the others to progress through the pipeline. This fairness
problem has been addressed usually from the point of view of
more efficient fetch policies or dynamic resource allocation
[2,4–6], although these approaches are not always successful in
predicting long latency phases, causing thread starvation for some
SMT workloads. In this paper, we propose a new and complemen-
tary approach to obtaining good throughput and fairness in a SMT
processor for a variety of workloads. We tackle long latency oper-
ations from a new perspective: instead of fetching threads based
on long-latency behavior, we propose phase-adaptive reconfigura-
ble caches in a Globally Asynchronous, Locally Synchronous (GALS)
design that, in conjunction with a cache control strategy, reduces
the average latency of cache operations for the active threads.

0141-9331/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2011.08.008

⇑ Corresponding author.
E-mail addresses: slaeec@rit.edu (S. López), ogarnica@dacya.ucm.es (Ó. Garnica),

albonesi@csl.cornell.edu (D.H. Albonesi), stevendropsho@google.com (S. Dropsho),
julandan@dacya.ucm.es (J. Lanchares), hidalgo@dacya.ucm.es (J.I. Hidalgo).

Microprocessors and Microsystems 35 (2011) 683–694

Contents lists available at SciVerse ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2011.08.008
mailto:slaeec@rit.edu
mailto:ogarnica@dacya.ucm.es
mailto:albonesi@csl.cornell.edu
mailto:stevendropsho@google.com
mailto:julandan@dacya.ucm.es
mailto:hidalgo@dacya.ucm.es
http://dx.doi.org/10.1016/j.micpro.2011.08.008
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


Our approach attempts to resolve the problems related with long-
latency operations at the source by reducing the average latency of
cache accesses. Moreover, our techniques are orthogonal to previ-
ously proposed fetch and dynamic resource allocation policies.

Using a GALS design approach, we place the reconfigurable ca-
ches into an independent clock domain within which frequency
can change in conjunction with the cache configuration. The con-
figuration for any given period of execution is established by a con-
trol algorithm that makes a decision based on the cache behavior
of the different active threads.

A similar GALS approach was used in [7] for a single-threaded
processor. We demonstate that the cache control strategy of [7]
is not as effective for dual and four thread SMT workloads as it is
for single thread ones. If we take into account fairness (the har-
monic mean of the per thread speedups [8]), the performance of
the four thread workloads degrades significantly.

The intuition behind the limited scalability of this prior strategy
is that it is constructed on the assumption that cache misses are on
the critical path of a thread’s computation. Thus, the original strat-
egy attempts to minimize the total access time to reduce the cost
of the cache misses. However, when there are multiple active
threads in an SMT core, the overall performance is affected less
from cache misses because other threads can run in the shadow
of the miss. In this scenario, a better cache control strategy is
one that selects cache configurations that greedily maximize the
near term cache access rate to favor threads that use the cache effi-
ciently. While these two strategies seem diametrically opposed, in
Section 3 we show that they are closely related mathematically;
the first minimizes the arithmetic mean cache access time, while
the second minimizes its harmonic mean.

Since the number of active threads on a given core may vary at
runtime, the most effective approach should use aspects of both
strategies depending on the number of active threads, i.e., mini-
mize total access time when there are few threads but maximize
the access rate when there are many threads. We propose and
evaluate such a hybrid approach in this paper.

To demonstrate the effectiveness of our proposed cache con-
trol strategy, we implement a quad-threaded core in the Simples-
calar simulator. The core is optimized to run with a small, fast
cache that can adjust to greater demands by dynamically upsizing.
We adopt the Accounting Cache design of [9] for our resizable ca-
ches, but implement a new cache control algorithm that better
balances multi-threaded needs compared to the original algo-
rithm designed for the single threaded case. The GALS design, in
particular, the Multiple Clock Domain (MCD) approach of [10],
decouples the adaptive caches from the execution core. Unlike
[10], our MCD processor supports SMT and a different domain
organization.

Our results demonstrate that the new hybrid control algorithm
is effective at reacting to single, dual, and quad thread workload
phase behavior. Whereas the first control algorithm performs well
for single and dual thread workloads, giving an 6.2% overall
improvement over the best synchronous processor baseline, the
benefits from using this algorithm disappear under quad thread
loads, averaging �3.4% In sharp contrast, the proposed hybrid
algorithm adjusts well to heavy SMT workloads and generates
consistent performance benefits across all workloads: 18.7%,
10.1%, and 14.2% for one, two and four thread workloads,
respectively.

Our contributions in this paper are the following:

� We propose an SMT architecture that uses a GALS clocking
design whereby the resizable L1 Dcache and L2 cache are
located in their own separately clocked domain.
� We adapt the Accounting Cache of [9] to run with multi-

threaded workloads.

� We show that the algorithm proposed for single-threaded
workloads in [10] is not effective in a four-way SMT environ-
ment and explain the reasons why this is the case.
� We propose a new algorithm that adapts its strategy depending

on the number of running threads and demonstrate that this
new algorithm outperforms the previous one in terms of
throughput and fairness.

This paper extends on [11]. We present further detail on the
cache architecture and algorithms, new results, and deeper insight
on the cache performance behavior.

The rest of this paper is organized as follows. The next section
discusses the adaptive SMT MCD microarchitecture, including the
adaptive cache organizations. Section 3 presents the adaptive
cache control algorithms. Our simulation infrastructure and bench-
marks are described next, followed by our results. Finally, we dis-
cuss related work in Section 6, and present our conclusions in
Section 7.

2. Adaptive SMT MCD microarchitecture

The adaptive SMT MCD microarchitecture highlighted in Fig. 1
has five independent clock domains, comprising of the front end
(L1 ICache, branch prediction, rename and dispatch); integer pro-
cessing core (issue queue, register file and execution units); float-
ing-point processing core (issue queue, register file and execution
units); load/store unit (load/store queue, L1 DCache and unified
L2 cache); and ROB (Reorder Buffer). The load/store domain varies
its frequency based on the cache configuration. The other domains
run at fixed frequency at all times and since there is little interac-
tion between them (and thus their interface introduces negligible
synchronization cost), they are effectively one fixed-frequency
execution core domain. External main memory operates at the
same fixed base frequency as the processing core and is also
non-adaptive.

The focus of this study is the load/store domain having reconfig-
urable L1/L2 caches. To adjust to varying SMT workloads, we have
extended the baseline MCD model to include SMT support; more-
over, only the L1 DCache and L2 cache of the load/store domain are
adapted under the direction of control algorithms that we intro-
duce later. This adaptive SMT MCD architecture has a base config-
uration that uses small cache sizes running at a high clock rate, but
the caches can be upsized with a corresponding reduction in the
clock rate of the load/store domain. In this study, all the non-adap-
tive domains – front end, integer, floating point, and main memory
– run at a base frequency of 1.0 GHz. The L1 DCache and L2 cache
are resized in tandem with the frequency of the load/store domain
varied accordingly. The dynamic frequency control circuit within
the load/store domain is a PLL clocking circuit based on industrial
circuits [12,13]. The lock time in our experiments is normally dis-
tributed with a mean time of 15 ls and a range of 10–20 ls. As in
the XScale processor [12], we assume that a domain is able to con-
tinue operating through a frequency change.

Data generated in one domain and needed in another must
cross a domain boundary, potentially incurring synchronization
costs. Our SMT MCD simulator models synchronization circuitry
based on the work of Sjogren and Myers [14]. It imposes a delay
of one cycle in the consumer domain whenever the distance be-
tween the edges of the two clocks is within 30% of the period of
the faster clock. In [15], the authors showed that in a single-thread
core, both superscalar execution (which allows instructions to
cross domains in groups) and out-of-order execution (which
reduces the impact of individual instruction latencies), tend to
hide much of the synchronization costs. Further details on the
baseline MCD model, including a description of the inter-domain

684 S. López et al. / Microprocessors and Microsystems 35 (2011) 683–694



Download	English	Version:

https://daneshyari.com/en/article/462819

Download	Persian	Version:

https://daneshyari.com/article/462819

Daneshyari.com

https://daneshyari.com/en/article/462819
https://daneshyari.com/article/462819
https://daneshyari.com/

