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a b s t r a c t

In this paper, we discuss a proximal-descent algorithm for finding a zero of the sum of two
maximal monotone operators in a real Hilbert space. Some new properties of forward–
backward splitting are given, which extend the well-known properties of the usual
projection. Then, they are used to analyze the weak convergence of the proximal-descent
algorithm without assuming Lipschitz continuity of the forward operator. We also give a
new technique of choosing trial values of the step length involved in an Armijo-like condi-
tion, which returns the (not necessarily decreasing) step length self-adaptively. Rudimen-
tary numerical experiments show that it is effective in practical implementations.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a real infinite-dimensional Hilbert space with usual inner product hx; yi and induced norm kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
for

x; y 2 H. We consider the problem of finding an x 2 H such that

FðxÞ þ BðxÞ 3 0; ð1Þ

where F : H! 2H is a continuous monotone operator in the whole Hilbert space H, and B : H ! 2H is a maximal monotone
operator, with the effective domain domB :¼ fx 2 H : BðxÞ– ;g. This problem model covers the minimization of convex func-
tions, computation of saddle points of convex-concave functions, solution of monotone complementarity and variational
inequality problems and so on [1,2].

For the problem above, a very simple iterative procedure is the following forward–backward splitting method [3,4]:

xkþ1 ¼ ðI þ akBÞ�1ðI � akFÞðxkÞ;

where I stands for the identity mapping, and ak > 0 is a step length. In this setting, F and B are usually called the forward
operator and the backward operator, respectively. When we take the backward operator to be the normal cone operator
of some nonempty closed convex set C in the Euclidean space, it reduces to a projection method for monotone variational
inequalities [5]: xkþ1 ¼ PC½xk � akFðxkÞ�, where PC is a usual projection onto the set C. This projection method is a direct gen-
eralization of a gradient projection method of Goldstein and of Levitin and Polyak, and see [6] for further discussions.

However, for global weak convergence, the forward–backward splitting method requires either the inverse of the forward
operator be strongly monotone in H (cf. [7]) or the forward operator be Lipschitz continuous monotone in H and the sum
operator Bþ F be strongly monotone on domB [7].
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To weaken these restrictive convergence assumptions, Tseng [2] modified the forward–backward splitting method by
adding an extra step at each iteration. More specifically, let X be some closed convex set intersecting the solution set of
the problem (1), choose the starting point x0 2 X . At kth iteration, for known iterate xk, choose ak > 0, then the new iterate
xkþ1 is given by

xkðakÞ :¼ ðI þ akBÞ�1ðI � akFÞðxkÞ; ð2Þ

xkþ1 :¼ PX ½xkðakÞ � akFðxkðakÞÞ þ akFðxkÞ�: ð3Þ

This iterative scheme described by (2) and (3) is sometimes called Tseng’s splitting algorithm. When domB ¼ H ¼ X , it can
be viewed as an instance of the HPE algorithm proposed in [8].

As is well-known, Tseng’s splitting algorithm has nice convergence properties. Its global weak convergence only requires
the forward operator be (Lipschitz) continuous in H, and the associated strong monotonicity is no longer assumed.

Subsequently, a relaxed form of Tseng’s splitting algorithm was discussed in the second author’s Ph.D. dissertation [9]:
Choose the step length ak > 0 through an Armijo-like condition. Compute

xkðakÞ ¼ ðI þ akBÞ�1ðI � akFÞðxkÞ: ð4Þ

And compute a relaxation factor ck > 0. Then the new iterate is given by

xkþ1 :¼ PX ½xk � ckðxk � xkðakÞ � akFðxkÞ þ akFðxkðakÞÞÞ�; ð5Þ

where X is the same set as defined in Tseng’s splitting algorithm. When specialized to monotone variational inequality prob-
lems, such an iterative scheme just reduces to a projection-type method independently proposed in [10–12]. As shown in [9],
it has the same nice convergence properties as Tseng’s splitting algorithm. From now on, as in [13], we call it a proximal-
descent algorithm for maximal monotone operators.

In this paper, our main goal is to further study the proximal-descent algorithm described by (4) and (5), and our contri-
butions are threefold.

� Firstly, we give two new properties of forward–backward splitting (see Lemma 2 below), which are extensions of two
well-known projection properties in [14,15]. Here we provide a simple and unified proof.
� Secondly, we make use of these new properties to analyze convergence behaviors of the proximal-descent algorithm for

monotone operators, and prove its weak convergence beyond Lipschitz continuity of the forward operator F, with the
same additional assumptions as those in [2]. The proof techniques take full advantage of these new properties of the for-
ward–backward splitting and are obviously different from Tseng’s.
� Thirdly, for the proximal-descent algorithm above, we give a new practical technique of choosing trial values of the step

length involved in the Armijo-like condition, which returns the (not necessarily decreasing) step length self-adaptively.
As a result, for our test problems, it needs fewer iterations and less CPU time in achieving the same medium accuracy
compared to Tseng’s splitting algorithm.

2. Preliminaries

In this section, we give and prove two new properties of forward–backward splitting, and they have interest in their own
right.

First of all, let us review some useful definitions and concepts. Recall that T : H! 2H is called monotone if

hs� s0; x� x0iP 0; for all x; x0 2 dom T; s 2 TðxÞ; s0 2 Tðx0Þ;

maximal monotone if it is monotone and its graph fðx; sÞ : x 2 H; s 2 TðxÞg can not be enlarged without loss of the monoto-
nicity. In addition, if there exists l > 0 such that hs� s0; x� x0iP lkx� x0k2, for all x; x0 2 dom T; s 2 TðxÞ; s0 2 Tðx0Þ, then T
is usually called strongly monotone. For a mapping F : H ! H, if there exists L > 0 such that

kFðxÞ � FðyÞk 6 Lkx� yk; for all x; y 2 H;

then F is called Lipschitz continuous inH. More on the Euclidean space Rn. Let f : Rn !R[ fþ1g be a closed proper convex
function, then its sub-differential is defined by

@f ðxÞ ¼ fs : f ðyÞ � f ðxÞP hs; y� xi; for all y 2 Rng

for any given x in Rn. Moreover, if f is further continuously differentiable, then @f ðxÞ ¼ frf ðxÞg, where rf ðxÞ is the gradient
of f at x 2 Rn. Let C be some nonempty closed convex set in Rn, the usual projection is defined by PCðuÞ ¼ argmin
fku� xk : x 2 Cg. The associated indicator function defined by

dCðxÞ ¼
0 if x 2 C;
1 if x R C:

�
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