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a b s t r a c t

This paper presents one-level and two-level iterative penalty finite element methods to
approximate the solutions of steady Navier–Stokes equations. First, one-level iterative pen-
alty finite element method is applied to solve the steady Navier–Stokes equations numer-
ically, and its H1 and L2 error estimates are derived. Then, two-level iterative penalty
scheme is given and its error estimates are obtained for velocity and pressure. Finally,
the numerical results are displayed to verify the theoretical analysis.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a bounded, convex, and open subset of R2 with a Lipschitz continuous boundary. We study the steady incom-
pressible Navier–Stokes problem

�mDuþ ðu � rÞuþrp ¼ f ; in X;

divu ¼ 0; in X;

u ¼ 0; on @X;

8><
>: ð1Þ

which describes a steady the incompressible viscous Newtonian fluid in a bounded domain. Here, u : X! R2 and p : X! R

represent the velocity and the pressure, f is the prescribed body force vector, and m > 0 is the viscosity.
Note that the velocity u and the pressure p in (1) are coupled together by the incompressibility constraint divu ¼ 0, which

makes the system difficult to solve numerically. A popular strategy to overcome this difficulty is to relax the incompressibil-
ity constraint in an appropriate way, resulting in a class of pseudocompressibility methods, among which are the penalty
method, the pressure stabilization method, the projection method, and the artificial compressibility method. In this article,
we mainly consider the penalty method (see Refs. [1–14] and the references therein). This method applied to (1) is to
approximate the solution ðu; pÞ by ðue; peÞ satisfying the following stationary penalty Navier–Stokes equations

�mDue þ Bðue;ueÞ þ rpe ¼ f ; in X;

divue þ e
m pe ¼ 0; in X;

ue ¼ 0; on @X;

8><
>: ð2Þ
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where 0 < e < 1 is a penalty parameter and Bðu;vÞ ¼ ðu � rÞv þ 1
2 ðr � uÞv is the modified bilinear term, introduced by Te-

mam [15,16] to ensure the dissipativity of the Eq. (2). Note that in (2) can be eliminated to obtain a penalty system of only,
which is much easier to solve than the original Eq. (1). Hence, the penalty method is a way to solve the Navier–Stokes prob-
lem by the single equation only contains u or p to numerically solve the original equations straightforwardly and efficiently,
and has been widely used in many areas of computational fluid dynamics [2]. The other main difficulties is the nonlinear
term ðu � rÞu, which can be precessed by the linearization method such as Newton iteration method, Stokes iteration meth-
od, Oseen iteration method [17], or the two-level methods [18–27]. Recently, the iterative penalty method was first intro-
duced by Cheng [28] for the Stokes equations and further used to solve the pure Neumann problem [29].

In this paper, we study the one-level iterative penalty finite element method and error estimates are derived

ku� uk
ehk1 þ kp� pk

ehk 6 cðhþ ekþ1Þ;

ku� uk
ehk 6 cðh2 þ ehþ ekþ1Þ:

Then we combine the iterative penalty method with the two-level method to approximate the solution of the problem (1).
The two-level iterative penalty methods studied in this paper can be described as follows. The first step and the second step
are required to solve a small Navier–Stokes equations on the coarse mesh in terms of the iterative penalty method. The third
step is required to solve a large linearization problem on the fine mesh in terms of Stokes iteration. We prove that these two-
level iterative penalty finite element solutions ðueh; pehÞ are of the following error estimate

ku� uehk1 þ kp� pehk 6 cðhþ H2 þ eH þ ekþ1Þ:

This paper is organized as follows. In next section, we will give the variational formulation of the problem (1) and (2) and
give some notations. In Section 3, we will give the iterative penalty finite element approximation and show error estimates.
In Section 4, we will propose two-level iterative penalty scheme and error estimates are proved. The numerical results is
given in last section.

Throughout this paper, the symbol c always denotes some positive constant which is independent of the mesh parameter
h;H; e and that maybe depends on m;X; k and the norms of u; p; f .

2. Preliminaries

Introduce

V ¼ H1
0ðXÞ

2
; Vr ¼ fu 2 V ; r � u ¼ 0g;

M ¼ L2
0ðXÞ ¼ q 2 L2ðXÞ;

Z
X

qdx ¼ 0
� �

:

Let jj � jjk be the norm in Hilbert space HkðXÞ2. Let ð�; �Þ and jj � jj be the inner product and the norm in L2ðXÞ2. Then we can
equip the inner product and the norm in V by ðr�;r�Þ and jj � jjV ¼ jjr � jj, respectively, because jjr � jj is equivalent to
jj � jj1. Let X be the Banach space, denote X0 the dual space of X and < �; � > be the dual pairing in X�X0. Introduce the fol-
lowing bilinear forms and trilinear form

aðu;vÞ ¼ mðru;rvÞ; 8 u;v 2 V ;

dðv; pÞ ¼ ðp;r � vÞ; 8 v 2 V ;p 2 M;

bðu; v;wÞ ¼ 1
2

R
X½ðu � rÞv �w� ðu � rÞw � v�dx; 8 u;v ;w 2 V :

8><
>:

Moreover, trilinear form bð�; �; �Þ satisfies

bðu; v;wÞ ¼ �bðu;w;vÞ; 8 u;v ;w 2 V :

Denote

N ¼ sup
u;v;w2V

bðu; v;wÞ
kukVkvkVkwkV

;

then

bðu; v; vÞ ¼ 0; 8 u; v 2 V ;

bðu; v;wÞ 6 NjjujjV jjv jjV jjwjjV ; 8 uv w 2 V ;

jbðu; v;wÞj þ jbðv; u;wÞj þ jbðw;u;vÞj 6 NkukVkvk2kwk; 8 u 2 V ; v 2 H2ðXÞ2; w 2 L2ðXÞ2:

8><
>: ð3Þ

The weak formulation associated with the problem (1) is the following variational problem:

H. Qiu et al. / Applied Mathematics and Computation 237 (2014) 110–119 111



Download English Version:

https://daneshyari.com/en/article/4628196

Download Persian Version:

https://daneshyari.com/article/4628196

Daneshyari.com

https://daneshyari.com/en/article/4628196
https://daneshyari.com/article/4628196
https://daneshyari.com

