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a b s t r a c t

Many problems in physics like reconstruction of the radially distributed emissivity from
the line-of-sight projected intensity, the 3-D image reconstruction from cone-beam projec-
tions in computerized tomography, etc. lead naturally, in the case of radial symmetry, to
the study of Abel’s type integral equation. In this paper, a new stable algorithm based on
shifted Chebyshev polynomial approximation is presented and analyzed. First, Chebyshev
operational matrix of integration P is constructed and then it is used to reduce the integral
equation to a system of algebraic equation which can be solved easily. The method is quite
accurate and stable even though the approximations are performed using polynomials of
degree up to 5. Some test examples from the plasma diagnostics are illustrated to demon-
strate the effectiveness and stability of the proposed method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Abel’s integral equation [1] occurs in many areas of physics and engineering such as plasma diagnostics, astronomy,
geophysics and image analysis. Usually, physical quantities accessible to measurement are quite often related to physically
important but experimentally inaccessible ones by Abel’s integral equation. Some of the studies where Abel’s integral equa-
tion is widely applicable are: seismology [2], satellite photometry of airglows [3], electron emission [4], atomic scattering [5],
flame and plasma diagnostics [6], and X-ray radiography [7].

In flame and plasma diagnostics the Abel’s integral equation relates the emission coefficient distribution function of opti-
cally thin cylindrically symmetric extended radiation source (particularly a plasma source) to the line-of-sight radiance mea-
sured in the laboratory. To obtain the physically relevant quantity from the measured one requires the inversion of the Abel’s
integral equation, and in case the object does not have radial symmetry, it requires, in principle, the inversion of Radon trans-
form [8].

The relation between the radial distribution of the emission coefficient eðrÞ and measured intensity IðyÞ from outside of
the source is described by the Abel transform. The Abel transform can be interpreted as the projection of a circularly
symmetric function along a set of parallel lines of sight which are at distance y from the origin (referring to the Fig. 1).
Reconstruction of the emission coefficient from its projection is known as Abel inversion.

For a cylindrically symmetric, optically thin, extended radiation source the relationship between the emissivity ekðrÞ and
the intensity IkðyÞ, as measured from outside the source is given as [9],
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for a particular wavelength k, where y is the displacement of the intensity profile from the plasma centerline, r is the radial
distance from the center of the source x2 þ y2 ¼ r2, and a is the source radius. It is assumed that ekðrÞ vanishes for r > a, and
hence IkðyÞ vanishes for jyj > a. For simplicity, we take a ¼ 1:0 in Eq. (1). Placing the variable of integration to r in Eq. (1), we
obtain
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a special form of Abel’s integral equation, where we have dropped the suffix k from IkðyÞ and ekðrÞ.
The analytical inversion of Eq. (2) is given as [10],

eðrÞ ¼ � 1
p

Z 1

r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � r2

p dIðyÞ
dðyÞ dy; 0 6 r 6 1: ð3Þ

If the data function (projected intensity IðyÞ) is given approximately only at a discrete set of data points then the process
of estimation of the solution function (emissivity eðrÞ) becomes ill-posed because presence of small errors in the data IðyÞ
might cause large errors in the reconstructed solution. This is due to the fact that these formulae require differentiation
of the measured data. In fact, two explicit analytic inversion formulae were given by Abel [1], but their direct application
amplifies the experimental noise inherent in the radiance data significantly [11]. In 1982, a third analytic but derivative free
inversion formula was obtained by Deutsch and Beniaminy [12] to avoid this problem.

In addition, some more numerical inversion methods [12–19] have been developed and each of these methods has some
limitation depending upon the presence of error in the measured data. In 1992, Mejia et al. [20] have analyzed the stable
Abel inversion through measured data on a discrete set of points using piecewise constant and piecewise linear interpolation
techniques. Later, some new developments on Abel inversion have also been presented by many researchers such as Cho and
Na [21], and George Chan and Hieftjen [22].

As per author’s knowledge, the latest contributions on Abel’s inversions are summarized as follows. In 2006, Yousefi [23]
has provided Legendre wavelet based method for solving Abel integral equations. In [24], Pandey et al. have discussed ana-
lytical methods like Homotopy perturbation method (HPM), modified Homotopy perturbation method (MHPM), Adomian
decomposition method (ADM) and modified Adomian decomposition method (MADM) for solving Abel integral equations.
Further, Singh et al. [25], presented a stable algorithm for Abel’s inversion using Bernstein’s polynomials. Ma et al. [26–27],
have presented Legendre polynomials and Legendre wavelets based stable algorithms for Abel’s inversion. Li et al. [28], have
provided and analyzed an efficient and stable method for Abel’s inversion using generalized Taylor–Stieltjes polynomial
approximation. Further, Huang et al. [29] discussed an approximate method for solving Abel integral equation by approxi-
mating the unknown function using Taylor series. In [30], Singh et al. constructed an operational matrix of integration based
on orthonormal Bernstein polynomials, and used it to propose an algorithm for solving the Abel’s integral equation. They
have also studied the stability of the method under the effect of fixed noise. Consequently, the direct use of Eq. (3) is
restricted and stable numerical methods are important.

Fig. 1. Geometrical interpretation of the Abel transform in two dimensions with radius a.
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