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a b s t r a c t

A network epidemic model for waterborne diseases spread is formulated, which incorpo-
rates both indirect environment-to-human and direct human-to-human transmission
routes. We consider direct human contacts as a heterogeneous network and assume homo-
geneous mixing between the environment and human population. The basic reproduction
number R0 is derived through the local stability of disease-free equilibrium and established
as a sharp threshold that governs the disease dynamics. In particular, we have shown that
the disease-free equilibrium is globally asymptotically stable if R0 < 1; while if R0 > 1, in
case of permanent immunity the endemic equilibrium is globally asymptotically stable
based on Kirchhoff’s matrix tree theorem, and in case of temporal immunity sufficient con-
ditions are given to guarantee global stability of the endemic equilibrium. Moreover, var-
ious immunization strategies are investigated and compared. The results obtained are
informative for us to further understand the disease propagation in multiple transmission
routes and devise some effective intervening measures to fight against the diseases spread.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Since the spread of a disease is not amenable to direct experimental study on humans, mathematical modeling for the
spread of infectious diseases is becoming increasingly an important tool to shed some light on the disease dynamical pro-
cesses. Due to the seminal work of Ross [1], who first proposed a kinetic model to investigate the spread of malaria and
employed a ‘‘threshold’’ concept, disease dynamical modeling has become a crucial approach in understanding the transmis-
sion and interventions of communicable disease qualitatively and quantitatively. The following influential work was that of
Kermack and McKendrick’s [2], who proposed a systematic ‘threshold theory’ that determines whether a disease will become
prevalent or not.

In recent years, epidemiology models have been studied by a number of researchers. For example, Mollison detailed the
structure of epidemic models and their relation to data [3]. De la Sen et al. discussed a generalized time-varying SEIR prop-
agation disease model subject to delays which potentially involved mixed regular and impulsive vaccination rules [4].
Kuniya and Inaba formulated a normalized system for an infected population as an initial boundary value problem of a par-
tial differential equation, and then established a threshold value for the existence and uniqueness of a nontrivial endemic
periodic solution of an age-structured SIS epidemic model with periodic parameters [5]. Nistal et al. investigated the
stability, periodic solutions and (regular or adaptive) impulsive vaccination design in a generalized SVEIR epidemic model
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[6]. Ackleh and Salceanu considered a nonautonomous version of the SIR epidemic model, and gave some sufficient condi-
tions for the robust uniform persistence of the total population, as well as of the susceptible and infected subpopulations [7].
The aim of these models is to both understand observed epidemiological patterns and predict the consequences of the intro-
duction of public health interventions to control the spread of diseases (see e.g., [8] for an overview).

Nowadays, waterborne diseases still remain a serious public health concern, rendering more than 3.5 million deaths per
year according to WHO estimates [9]. For example, cholera is one of the serious waterborne diseases, which causes diarrhea
and dehydration and could lead rapidly to death, especially in populations that are impoverished or have limited access to
health care [10]. Historically, six out of the seven cholera pandemics have swept the globe since 1816. Most recently, the
seventh pandemic started from Indonesia in 1961, spread into Europe, South Pacific and Japan in the late 1970s, reached
South America in 1990s, and has continued (though much diminished) to occur, such as the Zimbabwe cholera epidemic
from August 2008 to July 2009 which caused more than 98 thousand cases and 4,200 deaths [11]. Worldwide, about 3–5
million people have been infected with cholera and an estimated 100–130 thousand persons die in the year of 2010 alone
[12]. Therefore, cholera poses a significant public health burden to developing countries and continue to draw worldwide
attention.

There are many mathematical models being proposed in the literature to investigate the complex epidemic and endemic
behavior of cholera. For example, Capasso and Paveri-Fontana suggested the earliest mathematical model to study the 1973
cholera epidemic in the Mediterranean region [13]. The model consisted of two components, the concentration of the path-
ogen in water, x1, and the population of the infected people, x2. In 2001, Codeco [14] extended the work of [13] to explicitly
account for the role of the aquatic reservoir in cholera dynamics and incorporate the susceptible population into the model.
Following the similar idea, Hartley et al. [15] in 2006 included a hyper-infective stage of V. cholerae (i.e., freshly shed vibrios)
into their model, which tried to implicitly highlight the importance of direct human-to-human interaction in cholera epi-
demics. However, all of the previous models considered only one transmission route. Actually, many different specific trans-
mission pathways are possible, and there has been evidence showing that the direct human-to-human interaction also plays
a important role in cholera transmission [16,17]. To this end, Tien and Earn [18] proposed a waterborne pathogen model,
allowing bilinear incidence rates for both the environment-to-human and human-to-human transmission routes. Mukan-
davire et al. [19] presented a model with saturation effect to estimate the reproduction number for the 2008–2009 cholera
outbreak in Zimbabwe. In addition, there are many other factors being considered in attempting to understand waterborne
disease dynamics, including water treatment efforts [20], climatological factors such as rainfall [21,22], or pathogen ecology
outside of human hosts [23,24]. Unraveling how these factors interact to affect disease dynamics is remaining a challenging
issue.

So far, most of the above models often assume that the population is mixed homogeneously; in other words, each indi-
vidual in the population has the equal probability of contacting any other individual. This hypothesis is obviously not real-
istic. In fact, the connections among individuals allowing for the spread of infectious diseases naturally shape a network,
while the generated network provides us insights into the epidemic dynamics. Under such framework, each individual cor-
responds to a node of the network, and potential interactions among individuals correspond to the links; two individuals
connected by a link are neighbors of each other. For instance, the spreading of diseases can be considered as occurring over
a network of human contacts [25] and the spreading of computer viruses as occurring over the internet [26,27]. The intimate
relationship between epidemiology and network theory dates back to the mid-1980s [28,29]. Hence, one may argue that epi-
demiology has embraced the potential of network theory more than any other discipline.

In 2001, Pastor-Satorras and Vespignani [30,31] pioneered this field to model disease spread on a contact network with
the following SIS model (i.e., infected nodes go back to the susceptible state once recovered, without any immunity) based on
the mean-field theory,

dSkðtÞ
dt ¼ cIkðtÞ � bkSkðtÞHðIkðtÞÞ;

dIkðtÞ
dt ¼ bkSkðtÞHðIkðtÞÞ � cIkðtÞ;

(
ð1Þ

where c is the cure rate of infected nodes, b is the infected rate of each susceptible (healthy) node if it is connected to at least
one infected nodes; Nk is the total number of nodes with degree k, i.e., Nk ¼ Sk þ Ik; Sk and Ik are respectively the number of
susceptible and infectious nodes with degree k, and n is the maximum degree of all nodes. At each time step, the first term in
first equation of (1) represents the recovery of infected nodes in degree k, while the second term describes the probability
that a node with k links is healthy and then acquires the infection via a connected infectious node. In uncorrelated networks
the quantity HðIkðtÞÞ [31] is defined as

HðIkðtÞÞ ¼
Pn

k¼1kIkPn
k¼1kNk

;

which represents the probability that a randomly chosen edge emanating from a node of degree k points to an infected node.
Pastor-Satorras and Vespignani [32] demonstrated that the infection can invade the whole population if the following con-
dition is satisfied,

R0 ¼
b
c
hk2i
hki ¼

b
c
hki þ Var½k�

hki

� �
> 1; ð2Þ
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