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ARTICLE INFO ABSTRACT

Keywords: In this paper a new numerical approach of the elasto-plastic problem with mixed harden-
Elasto-plastic model ing in-plane stress state is proposed within the classical constitutive framework of small
Plane stress deformation. In the formalized problem, the non-zero normal component of the strain
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(namely, the component in the direction perpendicular to the plane of stress) is considered
to be compatible with the plane stress. We eliminate the rate of strains which are devel-
oped normal to the plane and solve an appropriate plane problem in the strain setting.
The integration algorithm for solving the elasto-plastic problem with mixed hardening
realizes the coupling of Radial Return Algorithm, namely an update algorithm, with the
finite element method applied to the discretized equilibrium balance equation. The solu-
tion of the pseudo-elastic nonlinear problem is then solved by Newton’s method. The
numerical algorithm (which is an incremental one) consists of the Radial Return Mapping
Algorithm, originally proposed by Simo and Hughes (1998) adapted to the stress plane
problem and coupled with a pseudo-elastic problem. We rebuild the algorithmic formula
giving rise to the plastic factor in terms of the trial stress state and the algorithmic elas-
to-plastic tangent moduli which is requested to evaluate the Jacobian that is necessary
to determine the displacement. The proposed algorithm has been named the revisited Simo
algorithm and is applied to exemplify the mode of integration of the bi-dimensional
problem.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with a new approach of the elasto-plastic problem with mixed hardening in the plane stress state, within
the classical constitutive framework of small deformation. To solve the boundary and initial value problem, we use an iter-
ative solution for the discretized equilibrium balance equation, a pseudo-elastic problem, which is coupled with the update
algorithm required to solve the rate-type constitutive model.

Numerous references are devoted to elasto-plasticity with small strains with respect to the constitutive description, func-
tional and numerical methods to solve the initial and boundary value problems. For the history and evolution of concepts
that occur in the constitutive equations, as well as different theoretical formulations of elasto-plasticity, the reader is
referred to Hill [11], Martin [19], Kachanov [7], Simo and Hughes [25] and Khan and Huang [8]. The evolution equations
for tensorial hardening variables, which describe the mixed hardening, were proposed by Prager [22,23], Armstrong and
Frederick [1], Chaboche [5]. Numerical tests are realized for elasto-plastic materials with kinematic hardening of Arm-
strong-Frederick type and scalar hardening function of Chaboche type and are compared with the experimental results
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obtained in laboratory by Broggiato et al. [4], using FEM code. The variation in time of the irreversible variables has been
alternatively defined through the principle of the maximum plastic dissipation. This principle has been attributed by Hill
[11] to Mises and considered, for instance, by Johnson [14], Lubliner [18] and Simo and Hughes [25]. This plays a basic role
in the mathematical development of the problem in plasticity, see for instance Han and Reddy [10] and Duvaut and Lions
[17]. The variational form of governing equations in plasticity in a discrete formalism was performed by Simo and Hughes
[25] in Chapter 4, by assuming the coupling between the total free energy functional, the Lagrangian functional associated
with the plastic dissipation, together with the Lagrange multiplier interpreted as plastic factor.

In Simo and Hughes [25], the authors pay attention to the so-called Radial Return Mapping Algorithm, which is consid-
ered to be the central problem in computational plasticity, and they mention that the method was first proposed by Wilkins
[26] and Krieg and Key [16]. The trial stress is a basic concept of the Radial Return Mapping Algorithm and is computed from
the elastic type constitutive equation for the frozen plastic behaviour at the previously reached value.

Within the J, plasticity theory the Radial Return Mapping Algorithm makes possible a closed-form solution of the prob-
lem, related to the rate-type description of constitutive models in elasto-plasticity. For an in-plane stress state, the algorithm
can not be applied since the plane stress condition is violated. The procedure proposed by Simo and Hughes [25] follows
Simo and Taylor [24] and performs the return mapping directly in the constrained plane stress space. Simo and Hughes
[25] mentioned that the strain components ¢, and ¢ do not appear explicitly in their formulation since
883 = — 1% (€8, + €%,), where v is the Poisson ratio, and &}; = —&}; — &5,. Thus €33 = %5 + &5;.

The Radial Return Mapping Algorithm in its various versions and extensions is based on the implicit backward Euler
method, applied to the system of differential equations which describe the models. The algorithms and their accuracy
and stability have been studied for instance by Hughes and Taylor [13] and Ortiz and Popov [21].

The finite element method (FEM) was generally used to solve variational equalities. The main ideas related to the FEM,
which have been developed by Bathe [2], Belytschko et al. [3], Fish and Belytschko [9], Hughes [12], Johnson [15] and applied
to various elastic problems, say for instance the isoparametric FEM, will be applied in this paper.

In Section 2, we formulate the differential type constitutive equations, which describe the behaviour of isotropic elasto-
plastic material with isotropic and kinematic hardening. In the formalized rate-type constitutive model for in-plane stress,
the non-zero normal component of the strain &3 (namely, the component in the direction perpendicular to the plane of
stress) has to be consistent with the requirement to have a plane stress state within the considered framework. We apply
the procedure developed by Cleja-Tigoiu [6] within the finite elasto-plasticity to eliminate the rate of strain which develops
normal to the plane. We emphasize the peculiar aspects related to the generalized plane strain: (a) the matrix of elastic coef-
ficients for isotropic material is replaced by the constitutive matrix of the elastic moduli &), a fourth-order tensor associated
with bi-dimensional symmetric tensors, Sym,; (b) the normality of the flow rule to the yield surface is lost for the in-plane
stress; (c) the new expression of the plastic factor is provided in terms of the plane strain rate.

In Section 3 the initial and boundary value problem, Problem P, is formulated starting from the elastic type constitutive
equation and the equilibrium equation to be satisfied by the stress, together with the rate-type constitutive description of
the elasto-plastic material. To solve numerically Problem P, we consider the discretized weak formulation associated with
the equilibrium equations, namely a pseudo-elastic problem, in order to find the stress ¢,,,1 and the displacement vector u,
at time t,1.

In Section 4, for a given incremental strain history, the update algorithm is built to solve the differential-type system
which describes the in-plane stress state. We use here the Radial Return Algorithm proposed by Simo and Hughes [25],
in a revised form adapted to the in-plane stress state. We rebuild the algorithmic expression of the plastic factor in terms
of the trial stress state and derive the new algorithmic elasto-plastic tangent moduli for the isotropic-kinematic hardening
model.

Next, in Section 5 the FEM is used to solve the pseudo-elastic problem, which is reduced to a non-linear system for the
displacement vector u,,; at time t, ;. The displacement u,,; is then solved by Newton's method, while to evaluate the
Jacobian of the system the previously calculated elasto-plastic moduli are requested.

To exemplify the numerical integration of the bi-dimensional problem and prove the efficiency of the numerical
algorithm proposed in Section 6, we consider two examples in Section 7. In the numerical simulations a trapezoidal plate,
with and without a hole, has been deformed for an in-plane stress generated by periodic forces applied on the horizontal
edge of the plate. The numerical results of the simulations for the in-plane stress were performed using the material param-
eters given by Broggiato et al. [4] and compared to the solution that corresponds to Simo and Taylor [24], the so-called Simo
solution.

Further we shall use the following notations:

R is the set of real numbers, and R¢o = {x € R|x < 0};

Lin,Lin" are the sets of second-order tensors and the corresponding elements with positive determinant, respectively;
Sym C Lin the set of symmetric tensors; Sym, the set of symmetric plane tensors;

o =devos =0 — % (tro)ls the deviatoric part of the stress tensor;

€ the tensor of elastic moduli (the fourth order tensor); 44, 4, the Lamé elastic constants;

E the Young modulus; v the Poisson ratio;

{e;} a Cartesian basis in R?; I, = dije; ® e; the second-order identity tensor in R?; I3 the identity tensor in R3;

Iy =1 [0ud; + Sy6u] e ® € ® e, ® e; the fourth-order identity tensor;
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