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ARTICLE INFO ABSTRACT

Keywords: In this paper, we modified the split-step backward Euler method (MSSBE) for stochastic

Poisson process delay differential equations with Poisson-driven jumps (SDDEw]s). Second, we prove that

GIOba! LIPS'ChltZ' MSSBE is strongly convergent if the drift coefficient f(x,y) satisfies one-side Lipschitz with

(S)“ft'S‘Se Lipschitz respect to x, global Lipschitz with respect to y, the diffusion and jump coefficients are glob-
plit-step

ally Lipschitz. On the way to proving the convergence result, we show that Euler-Maruyama
method converges strongly when SDDEw]s coefficients satisfy local Lipschitz condition, the
pth moments of the exact and numerical solution are bounded for some p > 2; the MSSBE
may be viewed as an Euler-Maruyama approximation to a perturbed SDDEw]Js of the same
form.

Strong convergence
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1. Introduction

Applications in economics, finance, and several areas of science and engineering, give rise to jump-diffusion Ito stochastic
differential equations [1,3,12]. [5] have studied the convergence and stability of split-step backward Euler (SBBE) method
and compensated SBBE method when the drift coefficients satisfy one-side Lipschitz and the diffusion and jump coefficients
are globally Lipschitz. [6] have studied the convergence and stability of implicit methods under global Lipschitz conditions.
[7] have shown that under one-side Lipschitz and polynomial growth conditions on the drift coefficient, global Lipschitz con-
ditions on the diffusion and jump coefficients the convergence order of SBBE is 0.5 in mean-square sense. [8] have studied
the asymptotic stability of balanced methods for linear stochastic jump-diffusion differential equations.

In general, the future state of a system depends on the present and past states. Hence, it is more significant to consider
stochastic delay differential equations with Poisson-driven jumps (SDDEw]s).

Throughout this paper, let (Q, #, {#},., P) be a complete probability space with a filtration {#},. , satisfying the usual
conditions. Let W(t) be a d-dimensional Brownian motion, N(t) be a scalar Poisson process with intensity / and independent
of the Brownian motion. We will use | - | to denote the Euclidean norm of a vector and the trace norm of a matrix, (-,-) to
denote the scalar product. We will denote the indicator function of a set G by I¢. For u € R,In[u] denotes the integer part
of p.

Let T and T be positive constants. In this paper, we consider the following n-dimensional SDDEw]s
{dx(f) = fx(t),x(t(t)))dt + g(x(t),x(T(t)))dW(t) + h(x(t), x(z(t)))dN(t), 0<t<T, 11
X(t) = ([)(t), te [71'7 0]7 ’
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where f: R" x R — R", g: R" x R" — R™4 h:R" x R" — R", 7(t) satisfy: there exists a positive constant p such that
—t<t(t)<t, and |t(t) —T(s)| < plt—5|, VE, s=0 (1.2)
and ¢(t) € C([-7,0]; R") which satisfy: there exist constants K; > 0 and y € (0, 1] such that forall -1 <s<t<0
El(t) — () < Ki(t—s)'. (1.3)

In general, finite-time convergence theory for numerical methods applied to SDDEw]s requires a global Lipschitz assump-
tion on drift, the diffusion and jump coefficients, such as [9,13]. In practice, many important SDDEw]s models satisfy only a
local Lipschitz property. We prove that the Euler-Maruyama method converges strongly if f, g and h are locally Lipschiz, the
exact and numerical solution have bounded pth moment for some p > 2 in Section 2. The bounded moment assumption will
not, of course, hold, in general, as solutions to the SDDEw]s may explode in a finite time. In Section 3, we give further
assumptions on f,g and h to ensure that x(t) has bounded moments: we assume that g and h are globally Lipschitz,
f(x,y) satisfies one-sided Lipschitz condition with respect to x and global Lipschitz condition with respect to y. For a suitably
constructed MSSBE, we establish strong convergence (Theorem 3.3) by (a) showing that the method corresponds to Euler-
Maruyama on a perturbed SDDEwPJs and (b) showing that all moments of the numerical solution are bounded. We are
unable to establish moment bounds for the Euler-Maruyama method and, indeed, it may not be possible to do so [4].

2. The Euler-Maruyama method for locally Lipschitz coefficients
Let the step-size A € (0, 1) be X for some positive integer m. The Euler-Maruyama (EM) method applied to (1.1) comput-
ers approximations Y ~ x(t;) with t, = kA, by setting Y = ¢(tx) for —m < k < 0 and forming
Yier = Yie+ Af(Yie, Yingect/a1) + 8(Yies Yinge(oa) AW + h(Y i, Yinje(egy /) AN, (2.1)

where AW, = W(ty1) — W(ty), ANy = N(try1) — N(ty).
A key component in our analysis is the compensated Poisson process

N(t) := N(t) — it,

which is a martingale. It is convenient to use continuous-time approximations, and hence we define Y(t) by

WU:%+/fW®ﬂm$+/gW®J®MW®+/hW@J@MM& (22)
0 0 0
with Y(t) = ¢(t) on —7 < t < 0. Where

Y(S) = Yk, and Z(S) = Yln[T(tk)/A] for s ¢ [tk,tk+1). (23)

Our first result makes the following assumption on (1.1), the exact and numerical solutions.

Assumption 2.1. For each R >0 there exists a constant Cz depending on R, such that for all x,y,xy<cR",
[X]V Iyl Vx| VIy| <R

la(x.y) —a(x.y)]" < Ce(lx =X + |y —y"), fora=fgandh (2.4)
For some p > 2 there is a constant A such that
E| sup |x(t)|P} v [E[ sup \Y(t)ﬂ <A. (2.5)
—T<t<T —T<t<T

We note for later use that linear growth bounds follow straightforwardly:

lax,y)| < {1+ X +yf), for x| VIy| <R a=fgh, (2:6)
where C? = 2C; v 2[f(0,0)[* v 2|g(0,0)|* v 2|h(0, 0)*.
The following result generalises Theorem 2.1 in [11] to the case of jumps.

Theorem 2.2. Under Assumption 2.1, the EM solution (2.1) with continuous extension (2.2) satisfies

limE | sup [x(t) — Y(t)[*| = 0. (2.7)

A-0 |o<t<T
The proof of this theorem is complicated. Next, we will present two lemmas. First, we define

pr:=Inf{t = 0:|x(t)] = R}, 7tr:=inf{t = 0:|Y(t)| = R}, 0r := pg A Tr.
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