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a b s t r a c t

In this paper, we modified the split-step backward Euler method (MSSBE) for stochastic
delay differential equations with Poisson-driven jumps (SDDEwJs). Second, we prove that
MSSBE is strongly convergent if the drift coefficient f ðx; yÞ satisfies one-side Lipschitz with
respect to x, global Lipschitz with respect to y, the diffusion and jump coefficients are glob-
ally Lipschitz. On the way to proving the convergence result, we show that Euler–Maruyama
method converges strongly when SDDEwJs coefficients satisfy local Lipschitz condition, the
pth moments of the exact and numerical solution are bounded for some p > 2; the MSSBE
may be viewed as an Euler–Maruyama approximation to a perturbed SDDEwJs of the same
form.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Applications in economics, finance, and several areas of science and engineering, give rise to jump-diffusion Ito stochastic
differential equations [1,3,12]. [5] have studied the convergence and stability of split-step backward Euler (SBBE) method
and compensated SBBE method when the drift coefficients satisfy one-side Lipschitz and the diffusion and jump coefficients
are globally Lipschitz. [6] have studied the convergence and stability of implicit methods under global Lipschitz conditions.
[7] have shown that under one-side Lipschitz and polynomial growth conditions on the drift coefficient, global Lipschitz con-
ditions on the diffusion and jump coefficients the convergence order of SBBE is 0.5 in mean-square sense. [8] have studied
the asymptotic stability of balanced methods for linear stochastic jump-diffusion differential equations.

In general, the future state of a system depends on the present and past states. Hence, it is more significant to consider
stochastic delay differential equations with Poisson-driven jumps (SDDEwJs).

Throughout this paper, let (X;F, fFtgtP0;P) be a complete probability space with a filtration fFtgtP0 satisfying the usual
conditions. Let WðtÞ be a d-dimensional Brownian motion, NðtÞ be a scalar Poisson process with intensity k and independent
of the Brownian motion. We will use j � j to denote the Euclidean norm of a vector and the trace norm of a matrix, h�; �i to
denote the scalar product. We will denote the indicator function of a set G by IG. For l 2 R; In½l� denotes the integer part
of l.

Let s and T be positive constants. In this paper, we consider the following n-dimensional SDDEwJs

dxðtÞ ¼ f ðxðtÞ; xðsðtÞÞÞdt þ gðxðtÞ; xðsðtÞÞÞdWðtÞ þ hðxðtÞ; xðsðtÞÞÞdNðtÞ; 0 6 t 6 T;

xðtÞ ¼ uðtÞ; t 2 ½�s;0�;

�
ð1:1Þ
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where f : Rn � Rn ! Rn, g : Rn � Rn ! Rn�d, h : Rn � Rn ! Rn; sðtÞ satisfy: there exists a positive constant q such that

�s 6 sðtÞ 6 t; and jsðtÞ � sðsÞj 6 qjt � sj; 8t; s P 0 ð1:2Þ

and uðtÞ 2 Cð½�s;0�; RnÞ which satisfy: there exist constants K1 > 0 and c 2 ð0;1� such that for all �s 6 s < t � 0

EjuðtÞ �uðsÞj2 6 K1ðt � sÞc: ð1:3Þ

In general, finite-time convergence theory for numerical methods applied to SDDEwJs requires a global Lipschitz assump-
tion on drift, the diffusion and jump coefficients, such as [9,13]. In practice, many important SDDEwJs models satisfy only a
local Lipschitz property. We prove that the Euler–Maruyama method converges strongly if f ; g and h are locally Lipschiz, the
exact and numerical solution have bounded pth moment for some p > 2 in Section 2. The bounded moment assumption will
not, of course, hold, in general, as solutions to the SDDEwJs may explode in a finite time. In Section 3, we give further
assumptions on f ; g and h to ensure that xðtÞ has bounded moments: we assume that g and h are globally Lipschitz,
f ðx; yÞ satisfies one-sided Lipschitz condition with respect to x and global Lipschitz condition with respect to y. For a suitably
constructed MSSBE, we establish strong convergence (Theorem 3.3) by (a) showing that the method corresponds to Euler–
Maruyama on a perturbed SDDEwPJs and (b) showing that all moments of the numerical solution are bounded. We are
unable to establish moment bounds for the Euler–Maruyama method and, indeed, it may not be possible to do so [4].

2. The Euler–Maruyama method for locally Lipschitz coefficients

Let the step-size D 2 ð0;1Þ be s
m for some positive integer m. The Euler–Maruyama (EM) method applied to (1.1) comput-

ers approximations Yk ’ xðtkÞ with tk ¼ kD, by setting Yk ¼ uðtkÞ for �m 6 k � 0 and forming

Ykþ1 ¼ Yk þ Df ðYk;Y In½sðtkÞ=D�Þ þ gðYk; Y In½sðtkÞ=D�ÞDWk þ hðYk;Y In½sðtkÞ=D�ÞDNk; ð2:1Þ

where DWk ¼Wðtkþ1Þ �WðtkÞ, DNk ¼ Nðtkþ1Þ � NðtkÞ.
A key component in our analysis is the compensated Poisson processeNðtÞ :¼ NðtÞ � kt;

which is a martingale. It is convenient to use continuous-time approximations, and hence we define YðtÞ by

YðtÞ :¼ Y0 þ
Z t

0
f ðYðsÞ; zðsÞÞdsþ

Z t

0
gðYðsÞ; zðsÞÞdWðsÞ þ

Z t

0
hðYðsÞ; zðsÞÞdNðsÞ; ð2:2Þ

with YðtÞ ¼ uðtÞ on �s 6 t � 0. Where

YðsÞ :¼ Yk; and zðsÞ :¼ Y In½sðtkÞ=D� for s 2 ½tk; tkþ1Þ: ð2:3Þ

Our first result makes the following assumption on (1.1), the exact and numerical solutions.

Assumption 2.1. For each R > 0 there exists a constant CR depending on R, such that for all x; y; �x; �y 2 Rn,
jxj _ jyj _ j�xj _ j�yj 6 R

jaðx; yÞ � að�x; �yÞj2 6 CRðjx� �xj2 þ jy� �yj2Þ; for a ¼ f ; g and h ð2:4Þ

For some p > 2 there is a constant A such that

E sup
�s6t6T

jxðtÞjP
� �

_ E sup
�s6t6T

jYðtÞjP
� �

6 A: ð2:5Þ

We note for later use that linear growth bounds follow straightforwardly:

jaðx; yÞj 6 CR
1ð1þ jxj

2 þ jyj2Þ; for jxj _ jyj 6 R; a ¼ f ; g;h; ð2:6Þ

where CR
1 ¼ 2CR _ 2jf ð0; 0Þj2 _ 2jgð0;0Þj2 _ 2jhð0;0Þj2.

The following result generalises Theorem 2.1 in [11] to the case of jumps.

Theorem 2.2. Under Assumption 2.1, the EM solution (2.1) with continuous extension (2.2) satisfies

lim
D!0

E sup
06t6T

jxðtÞ � YðtÞj2
� �

¼ 0: ð2:7Þ

The proof of this theorem is complicated. Next, we will present two lemmas. First, we define

qR :¼ infft P 0 : jxðtÞjP Rg; sR :¼ infft P 0 : jYðtÞjP Rg; hR :¼ qR ^ sR:
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