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ARTICLE INFO ABSTRACT

Keywords: An asymptotic solution that describes a small amplitude gravity-capillary wave propagat-
Lagrﬁngian ing on the surface of a gentle sloping beach is derived in the Lagrangian coordinates. The
Sloping bottom analytical solution in Lagrangian form satisfies the zero pressure at the free surface. In
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the Lagrangian approximation, the parametric expression of water particles can be
obtained directly and explicitly as a function of the wave steepness, the bottom slope
and surface tension. The analytical solution for wave asymmetry parameter up to the
breaker line for an arbitrary bottom slope can also be derived. The Lagrangian solution
enables the description of the features of wave shoaling in the direction of wave propaga-
tion from deep to shallow water, as well as the process of successive deformation of a wave
profile which leads to wave breaking. Furthermore, by comparing the theoretical values of
wave asymmetry with experimental results, it is found that theoretical results of the pres-
ent solution are in good agreement with the experimental data. It is also found that surface
tension lower the breaking wave height, lengthen the wave length and increase the break-
ing water depth.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The motion of fluid flow may be described by either observing the fluid velocity at a fixed position or the trajectory of a
particle that is carried along with the flow. These alternative descriptions are called Eulerian and Lagrangian method, respec-
tively. For an incompressible fluid the Eulerian approach is clearly preferable, because of the corresponding continuity equa-
tion is linear. It is known that the Eulerian description at the free surface is always expressed in Taylor series at a fixed water
level, which implicitly assumes that the surface profile is a differentiable single-valued function. Unlike an Eulerian surface,
which is given as an implicit function, a Lagrangian form is expressed through a parametric representation of particle
motion. A Lagrangian description is more appropriate for limiting free surface motion whereas this feature cannot be
represented by the classical Eulerian solutions [20-22].

The first water wave theory in Lagrangian coordinates was obtained by Gerstner [18] who assumed the flow possesses
finite vorticity. After Gerstner’s original discovery, this wave motion was re-discovered by Rankine [29].Gerstner’s wave is
a periodic travelling wave with a specific vorticity distribution (see [7,19] for a modern treatment of Gerstner’s wave). Miche
[26] proposed perturbation Lagrangian solution to the second order for a gravity wave. Pierson [28] also applied perturbation
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expansion to water wave problems with Lagrangian formulae and obtained a first-order Lagrangian solution. Buldakov et al.
[3] developed a Lagrangian asymptotic formulation up to a fifth order for nonlinear water waves in the deep water. However,
the theories mentioned above are highly rotational, which is inconsistent with Kelvin's circulation theorem [25,31] and are
limited to the condition of uniform water depth.

To date, only a limited few analytic solutions are derived for wave transformation on a planar beach in Lagrangian coor-
dinates. Among them, Sanderson [30] obtained a second-order solution in a uniformly stratified fluid with a small bottom
slope in a Lagrangian system. Constantin [6] considered the first-order Lagrangian solution for edge wave on a sloping beach
in a homogeneous flow. This solution was extended to stratified flows [32]. Kapinski [24] studied the runup of a long wave
over a uniform sloping bottom in Lagrangian description. Chen and Hwung[5]| obtained linear solution in a uniformly fluid
with small bottom slopes in the Lagrangian system. The particle path description was recently addressed in the context of
the 2004 tsunami [13]; see also the related discussion of Constantin [9]. However, Chen and Huang[5] did not consider the
effect of surface tension. Its well known that surface tension generates a significant influence on the wave breaking profile,
limiting wave height and the breaker height [1,4,27].

The purpose of this paper is devoted to explicit Lagrangian asymptotic solution for gravity-capillary waves propagating
over a sloping bottom in Lagrangian coordinates. In order to examine the effects of sloping bottoms and surface tension on
surface waves, a perturbation expansion is used to derive an expression of the particle trajectories in terms of the wave
steepness and the bottom slope. The free surface conditions in Lagrangian coordinates are linear and the physical quantities
related to the wave motion are expanded in terms of the bottom slope, wave steepness and surface tension, so that the
asymptotic solution in Lagrangian coordinates could be derived. The wave profile is obtained by setting vertical label equal
to zero at free surface in which the zero pressure is satisfied. Finally, discussions are drawn for the related physical quantities
obtained from the present solutions.

2. Formulation of the problem

Consider a two-dimensional monochromatic wave propagating normally over a uniform gentle slope as shown in Fig. 1.
The negative x-axis directed outward to the sea, while the positive y-axis taken vertically upward from the still water level,
where the sea bottom is at y = —d = ox, in which denotes the bottom slope. The fluid motion in the Lagrangian representa-
tion is described by tracing individual fluid particles. For two-dimensional flow, fluid particles are distinguished by the
horizontal and vertical parameters Xo, y,, known as Lagrangian labels. These labels have one-to-one correlation with the
initial positions (x,y) of particles which has been shown in, say, Section 16 of Lamb [25] or Yakubovich and Zenkovich
[34]. The fluid motion is described by a set of trajectories x(xo, Y, t) and y(Xo, Yo, t), where x and y are Cartesian coordinates.
The dependent variables x and y express the position of any particle at time t and are function of the independent variables
X0, Yo and t. The system of Lagrangian governing equations and boundary conditions for two-dimensional irrotational free-
surface flow are summarized below:
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Fig. 1. Definition sketch for surface-wave propagation on a gentle sloping bottom.
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