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ARTICLE INFO ABSTRACT

Keywords: We investigate the issue of which state functionals can have their uncertainty estimated
Hidden Markov model efficiently in dynamical systems with uncertainty. Because of the high dimensionality
Ordinary differential equation and complexity of the problem, sequential Monte Carlo (SMC) methods are used. We inves-
Sequential Monte Carlo methods tigate SMC methods where the proposal distribution is computed by maximum likelihood

Chemical process or by a linearization approach. We prove that the variance of the SMC method is bounded

linearly in the number of time steps when the proposal distribution is truncated normal
distribution. We also show that for a moderate large number of steps the error produced
by approximation of dynamical systems linearly accumulates on the condition that the log-
arithm of the density function of noise is Lipschitz continuous. This finding is significant
because the uncertainty in many dynamical systems, in particular, in chemical engineering
systems, can be assumed to have this nature. We demonstrate our findings for a simple test
case from chemical engineering. The theoretical findings provide a foundation for the par-
allel software SISTOS.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Accountancy of expensive or consequential materials in the production process for chemical plants is a critical endeavor.
For example, nuclear fuel reprocessing [ 1] facilities are expensive to build, are costly to operate, and have multiple stages and
subsystems [2-4], losses of even minute amounts of the nuclear fuel can be therefore consequential. Currently, the Unite
States has more than 15,000 chemical plant sites, which are required to file a risk management plan with the U.S. Environ-
mental Protection Agency. Such plans consider both worst-case scenarios and alternative-case scenarios. Alternatives in-
clude the abnormal release of controlled materials or illegal plant interference. Whereas worst-case scenarios can be
determined relatively efficiently with mass-balance approaches, it is difficult to detect long-term, slow releases, which
are likely to be confused with measurement noise or other uncertain information. Hence, having superior accountancy will
enable early detection of situations that may affect the safety of such plants and that may otherwise be hard to detect.
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Aiming for incorporating more information in the accountancy process, we investigate issues connected with modeling
chemical reactions, in addition to achieving a superior estimation of the state. The problem is the one of estimating functionals
of the state of a nonlinear dynamical system, given measurements with noise. To that end, we investigate the use of a hidden
Markov model to estimate important functionals of the state of the system [5]. However, because of the high dimensionality
and the nonlinear nature of the chemical reaction, to produce samples from the target distribution is difficult. Not the least of
the difficulties is the fact that the large dimension of high-fidelity models may not allow us to store in memory all estimates
at one time. Therefore, we investigate sequential sampling plans. Specifically, sequential Monte Carlo (SMC) methods (also
called particle filters) produce scenarios of past and current time so that function of interest can be estimated. The most fa-
mous filter is the Kalman filter [6], which is used to make estimates in a Bayesian framework for linear Gaussian problems.
For nonlinear systems, ensemble Kalman filters [7,8] or unscented Kalman filters [9] have emerged. One difficulty of such
filters is their need to maintain at each step an approximation of the full covariance matrix and to update each of its entries,
which results in exceedingly large memory and computational requirements [10].

In this paper, we investigate SMC methods that account for full nonlinearity. The proposal density is obtained by approx-
imating the Hessian information of the logarithm of the targeted density at modal scores and can be loosely thought of as
using a Kalman concept as a “preconditioner” for the sampling. By doing so, we get more accurate estimates while approach-
ing the performance of Kalman methods. Our main goal is to determine whether SMC works for dynamical systems of the
type encountered in chemical plants. We will thus justify the various assumptions we make about the dynamical systems by
typical features encountered in real systems.

The key hypotheses investigated are that (1) the variance of the estimates produced by the method guarantees apriori the
approach is tractable and (2) the proposal distributions we derive are sufficiently practical to be implemented. We demon-
strate our findings on a synthetic example around the methane steam reforming reaction. We implement SISTOS, the
Sequential Importance Sampling Toolkit of ODE Systems for statistical estimates of dynamical systems.

2. The statistical/uncertainty model
2.1. Hidden Markov model

The hidden Markov model (HMM) is a widely used approach in temporal pattern recognition, such as finance [11];
handwriting [12]; speech [13]; bioinformatics [14]; and, perhaps the area closest to that used here, weather forecast
[10].

HMM is based on a state space model that includes two components. The first describes the state evolution of the dynam-
ical system; while the second models noisy observations that are dependent on the state. Both parts include uncertainties.
The mathematical formulation is described as follows

X,':M(X,;1)+ﬂi, (1)
zi=Hx) + v, (2)

where i is the discrete time index. Here x; € X is the state variable (for example, the moles of the reactants in the reaction at
the beginning of step i) and p; is a random variable that quantifies the uncertainty in the model (for example, in the outside
feed or in the model itself). The variable z; € Z are the observed quantities (for example, the outputs after some time
period ;) and v; is a random variable that quantifies measurement error i. The variables p; and v; are the core of the uncertainty
model. Their definition controls the lack of information about both the computational model and the measurement process,
essentially the entire uncertainty space.

Another component of the model is M : M C X — &, a nonlinear function describing the evolution of the dynamical sys-
tem over the period between two observations (for simplicity we assume it models an autonomous system, though that
assumption can easily be relaxed). The mapping H : X — Z denotes the response of the measuring process. It is natural to
assume that the X ¢ R™ and Z c R™ are compact because many dynamical systems such as chemical plants have limited
capacity and most state variables should be nonnegative.

It immediately follows that the system described in (1) has the Markov property

P(Xi|Xe—1, Xk—2, - - -, X0) = P(Xi|Xk—1)-

To simplify the notation, we let X, := (X0, .. . ,xk)T and zo := (2o, - - ,zk)T. From the Markov property we obtain that the prior
density is
k
P®ox) = [ [ p(xilxi-1). (3)

i=0
From (2) we compute the density of the collection of observations conditioned on X, as

k

p(zoxlXox) = [ [ p(zifx:). (4)

i=0
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