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a b s t r a c t

A linearly localized difference scheme with the first-order time approximation, is proposed
for solving a nonlinear Maxwell model associated with the penetration of a magnetic field
into a substance. The new scheme is computationally efficient since the resulting algebra
equations are linear and can be computed by the fast Thomas algorithm without any
Newton-type inner iterations. It is also local in time, that is, only numerical solutions in
one previous time-level are necessary to update the current solutions, such that it requires
much less storage compared with the fully implicit method. Furthermore, the exponential
decaying behavior of difference solution, which is analogous to that of the continuous solu-
tion, is obtained. To improve the time accuracy, we apply the Crank–Nicolson-type time
discretization to construct a second-order linearly localized method. Numerical examples
are presented to support our theoretical results.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We propose two linearly localized difference methods for solving the nonlinear Maxwell equations arising in mathemat-
ical modeling of the process of a magnetic field penetrating into a substance. A variable magnetic field induces in the
material a variable electronic field which causes the appearance of currents. The currents lead to the heating of the material
and elevating its temperature. Consider the quasi-stationary approximation, the corresponding system of Maxwell’s
equations has the form

@H
@t
¼ �r� msr�Hð Þ; cs

@Ts

@t
¼ ms r�Hj j2; ð1:1Þ

where H ¼ Hx;Hy;Hz
� �T is a vector of the magnetic field, Ts is temperature, and cs and ms are the thermal heat capacity and

electro-conductivity of the substance. If cs and ms of the substance highly dependent on temperature, then the Maxwell’s
system can be rewritten in the following form [2]

@H
@t
¼ r� a

Z t

0
r�Hj j2ds

� �
r�H

� �
; ð1:2Þ
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where the function a ¼ aðrÞ is defined for r P 0. Let H ¼ 0;0;Uð ÞT with a scalar function U ¼ Uðx; tÞ, the above equation
becomes a one-dimensional nonlinear diffusion equation

Ut ¼
@

@x
a Sð Þ @U

@x

� �
; ð1:3Þ

where the nonlinear coefficient

Sðx; tÞ ¼
Z t

0
Uxðx; sÞj j2ds: ð1:4Þ

Take the magnetic field H ¼ 0;U;Vð ÞT in (1.2) with the scalar functions U ¼ Uðx; tÞ and V ¼ Vðx; tÞ, Eq. (1.2) becomes the
nonlinear system of two integro-differential equations

Ut ¼
@

@x
a Qð Þ @U

@x

� �
; Vt ¼

@

@x
a Qð Þ @V

@x

� �
; ð1:5Þ

where the nonlinear coefficient

Qðx; tÞ ¼
Z t

0
Uxðx; sÞj j2 þ Vxðx; sÞj j2

� 	
ds: ð1:6Þ

Note that the nonlocal Eqs. (1.2), (1.3) and (1.5) are complex and some special cases of such type models were only
investigated, for example, in [2–5]. The existence and uniqueness of global solution for the initial-boundary value problem
have been proven in [3]. The asymptotic behavior of the solutions to the initial-boundary value problem for (1.3) and (1.5)-
type models have also been investigated recently, see [7–10].

Numerical methods for the nonlinear integro-differential equations were investigated in [6,11–13]. Finite element
approximation and finite difference scheme for one nonlinear model arising from one-dimensional heat flow in materials
with memory have been proposed in [12,13]. Neta developed Galerkin finite element method in [12], and Neta and Igwe
[13] compared the finite element solution in [12] with an explicit difference approximation from the point of view of
accuracy and computer storage. It has been shown that the finite difference method yields comparable results for the same
mesh spacing using less computer storage. Taking the simple coefficient aðsÞ ¼ 1þ s, Jangveladze et al. [6] proposed the
following implicit difference scheme (see the discrete notations in Section 3) to approximate the Eq. (1.3),

unþ1
i � un

i

s
¼ dx 1þ s

Xnþ1

k¼0

dxuk
i�1

2




 


2
 !

dxunþ1
i�1

2

" #
; n P 0: ð1:7Þ

It has been shown that the fully implicit difference scheme (1.7) is convergent with an order of Oðsþ hÞ. Recently, this
scheme is generalized in [11] to solve one-dimensional nonlinear systems (1.5).

Note that, the fully implicit difference scheme (1.7) and its generalization in [11] are nonlinear and computationally
expensive because a Newton-type iteration [1] is always necessary to solve a large system of nonlinear equations at each
time level, see e.g. [11]. Although the nonlinear implicit schemes are stable and admit large time-steps, the convergence
of the Newton’s iteration may be slow especially when large time-steps are used. However, linearly implicit schemes are
attractive because the computational cost is roughly the same at each time level. In this report, we suggest two linearized
difference algorithms, one is first-order and another is second-order in time, which are shown to be computationally
efficient. Furthermore, the present methods are local in time, that is, only numerical solutions in one previous time-level
are necessary to update the current solutions. For the first-order linearized scheme, we obtain the long-time exponential
decaying behavior of the discrete solution, and apply the discrete energy method to prove the solvability and stability. Under
a reasonable assumption on the discrete solution, it is shown that the difference solution is convergent with an order of
Oðsþ h2Þ. To improve the time accuracy, we apply the Crank–Nicolson scheme to construct another linearized algorithm
which is experimentally convergent with an order of Oðs2 þ h2Þ.

The content of this report will be organized as follows. In the next section, long-time decaying behaviors of continuous
solution for the initial-boundary value problem are recalled. Section 3 presents the first-order linearized scheme and shows
that the discrete solution has the asymptotic property analogous to that of the continuous solution. The solvability, stability
and convergence of the first-order difference method are addressed in Section 4. To improve the time accuracy, a
Crank–Nicolson-type approximation is employed in Section 5 to construct a second-order linearized difference scheme.
Numerical experiments are presented in Section 6 to support our analysis. Short comments including some open problems
conclude the article.

2. Long-time behavior of continuous solution

Consider the following initial-boundary value problem

Ut ¼
@

@x
1þ Sð Þ @U

@x

� �
þ f ðx; tÞ; x 2 X; t 2 ð0;1Þ; ð2:1Þ
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