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a b s t r a c t

Recently, explicit tamed schemes were proposed to approximate the SDEs with the
non-Lipschitz continuous coefficients. This work proposes a semi-tamed Euler scheme,
which is also explicit, to solve the SDEs with the drift coefficient equipped with the
Lipschitz continuous part and non-Lipschitz continuous part. It is shown that the semi-
tamed Euler converges strongly with the standard order one-half to the exact solution of
the SDE. We also investigate the stability inheritance of the semi-tamed Euler schemes
and reveal that this scheme does have advantage in reproducing the exponential mean
square stability of the exact solution. Numerical experiments confirm the theoretical
analysis.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we study the numerical solution to the stochastic differential equations (SDEs) of the form

dxt ¼ lðxtÞdt þ rðxtÞdWt; xð0Þ ¼ n; ð1:1Þ

where Wt is a m-dimensional Brownian motion, r : Rd # Rd�m is global Lipschitz continuous, lðxÞ ¼ f ðxÞ þ gðxÞ is globally
one-side Lipschitz continuous, the function f : Rd # Rd is the Lipschitz continuous part of l, and g : Rd # Rd is non-Lipschitz
continuous part. The SDE of this form does involve many stochastic models in the real world, such as stochastic Duffing–van
der Pol oscillator [1,2], stochastic Lorenz equation [3,2], experimental psychology model [2], stochastic Ginzburg–Landau
equation [4,2], stochastic Lotka–Volterra equations [5,4,2] and volatility processes [4,2], to name a few. Numerical analysis
is an important tool in studying stochastic models, since most SDEs cannot be solved explicitly. In judging the quality of a
numerical scheme, it is necessary to examine its convergence and stability.

Since the drift coefficient is non-Lipschitz continuous, the classic explicit Euler–Maruyama (EM) method, investigated in
Kloeden and Platen [4], Maruyama [6] and Milstein [7] for approximating the SDEs with globally Lipschitz continuous coef-
ficients, may not converge in the strong mean square sense to the exact solution. Hutzenthaler et al. [8,9] shown that abso-
lute moments of the explicit EM approximation for a SDE with a superlinearly growing and globally one-sided Lipschitz
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continuous drift coefficient, diverge to infinity at a finite time point. Although the implicit method, such as the backward
Euler, split-step backward Euler methods, holds the strong convergence [10,11], it requires additional computation effort
to solve a implicit system. Recently, Hutzenthaler et al. [12] proposed a new explicit approximation, called drift-tamed Euler
method
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where DWN
n ¼W ðnþ1ÞT=N �WnT=N . It is shown that if the drift coefficient function is globally one-side Lipschitz continuous and

has an at most polynomially growing derivative, the drift-tamed Euler method (1.2) converge strongly to the exact solution
with the standard convergence order 0:5. Following the ideas, Wang and Gan [13] proposed the tamed Milstein method and
proved it converge strongly to the exact solution with the convergence order 1. For the SDEs with non-Lipschitz coefficients,
Hutzenthaler et al. [2] also proposed a series of the numerical approximations, such as partially drift-implicit approximation,
linear implicit scheme, drift-truncated Euler and increment-tamed Euler, etc. Sauer and Stannat [14] proved strong conver-
gence of the finite differences approximation in space for stochastic reaction diffusion equations with multiplicative noise
under a one-sided Lipschitz condition using the tamed idea.

Numerical stability for SDEs is primarily concerned with ascertaining for what values of stepsize does a particular numer-
ical method replicate the stability properties of the exact solution. Under the globally Lipschitz condition, the explicit Euler–
Maruyama scheme can reproduce the exponential mean square stability of the exact solution (see [15–19]), but for the SDEs
(1.1) with non-Lipschitz coefficients, Higham et al. [20] gave a counterexample to show that the explicit Euler scheme may
be explosive even though the exact solution is stable. Although the implicit scheme can share the stability of the exact solu-
tion (see [17,15,21]), it also requires additional computation effort to solve a implicit system. Therefore, it is necessary to
seek for a new numerical scheme, which is explicit and can replicate the stability properties of the exact solution for the SDEs
with non-Lipschitz continuous coefficients.

Inspired by the literature [22,12,2], we derive a non-Lipschitz term tamed approximation for SDE (1.1):
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We refer to this approximation as semi-tamed Euler scheme. The increment function defined in [2] is /ðx;h; yÞ ¼
f ðxÞhþ gðxÞ

1þkgðxÞkh hþ rðxÞy. We will firstly show that the semi-tamed Euler scheme converges strongly to the exact solution

with the standard convergence order 0:5. Then we prove that the semi-tamed Euler scheme (1.3) can not only reproduce
the exponential mean square stability of the exact solution, but also work better than the tamed Euler (1.2), backward Euler
and split-step backward Euler schemes at stability preservation under a stepsize restriction.

The rest of the paper is organized as follows. Section 2 begins with notations and estimation of the moment. Section 3
aims to show the strong convergence of the semi-tamed Euler scheme. Section 4 devotes to investigating the exponential
mean square stability of the semi-tamed scheme for SDEs. Section 6 provides some numerical experiments for
demonstration.

2. Estimation of the pth moments

Throughout the whole article, unless otherwise specified, we use the following notations. Let T 2 ð0;1Þ be a fixed real
number and N 2 N be the step number of the uniform mesh with the stepsize T=N. Let ðX;F;PÞ be a complete probability
space with a filtration fFtgtP0 satisfying the usual conditions and Wt be a m-dimensional Brownian motion defined on this

probability space. Moreover, we use the notation kxk ¼ ðjx1j2 þ � � � þ jxkj2Þ
1=2
; hx; yi ¼ x1y1 þ x2y2 þ � � � þ xkyk for all x; y 2 Rk;

k 2 N, and kAk :¼ supx2Rl ; kxk61kAxk for all A 2 Rk�l; k; l 2 N. a _ b represents maxfa; bg and a ^ b denotes minfa; bg. In this
work, we also make the following assumptions.

Assumption 2.1. Let gðxÞ be a continuously differentiable function and there exist positive constants K > 1 and c > 0, such
that for any x; y 2 Rd

kf ðxÞ � f ðyÞk _ krðxÞ � rðyÞk 6 Kkx� yk; ð2:1Þ

hx� y;lðxÞ � lðyÞi 6 Kkx� yk2
; ð2:2Þ

kg0ðxÞk 6 Kkxkc
: ð2:3Þ

Remark 2.1. There many stochastic models hold Assumption 2.1, such as stochastic Ginzburg–Landau equation, stochastic
Verhulst equation, volatility processes (see [2]). Note that conditions (2.1) and (2.2) imply that SDE (1.1) admits the pth
moment bounded solution in any finite time T (see [23]).
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