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a b s t r a c t

In this paper, we consider linear quadratic optimal control with constraint for discrete-
time stochastic systems with state and disturbance dependent noise. With the aid of the
Lagrange multiplier theorem, we present a necessary condition under which the problem
is well posed and a state feedback solution can be derived. Moreover, a sufficient condition
is introduced for the case in which the quadratic-term matrices are non-negative. In a way,
the previous results on stochastic linear quadratic optimal control without constraint can
be regarded as corollaries of the theorems of this paper.

� 2014 Published by Elsevier Inc.

1. Introduction

The linear quadratic (LQ) optimal control problem was pioneered by Kalman [1], which has been playing a central role in
modern control theory. In recent decades, the definite LQ control problem has been investigated extensively by many
researchers [2,3]. Stochastic LQ control problem for the Itô systems was initiated by Wonham [4], while the nonlinear
regulator problem was discussed in [5]. Some of the works on this subject revealed that for stochastic Itô systems, even if
the state and control weighting matrices Q and R are indefinite, the corresponding stochastic LQ problem may be still well
posed, which was first found in [6], and has inspired a series of works [7–9]. For the discrete-time LQ control problems with
control and or state dependent noises, there have been some works in literature. One early work [10] deals with a special
case, whose systems are described by a difference equation in which both the system matrix and control matrix are multi-
plied by white, possibly correlated, scalar random sequences. In another article [11] the optimal control law is derived for the
systems with only control dependent noises. It is worth noting that the state weight matrix is nonnegative and the control
weight matrix is positive definite in both papers.

For discrete-time LQ problem, the control weighting matrix is not required to be positive definite, even negative when
uncertainty factors are involved in the system [12]. Most previous researchers mainly studied indefinite stochastic LQ prob-
lems without constraints. However, some constraints are considerable importance in many physical systems. The finite time
indefinite stochastic LQ control with linear terminal state constraint was discussed [13]. It is a valuable research topic to gen-
eralize those results to the discrete-time systems.

In this paper, we concentrate our attention on the finite horizon discrete-time indefinite stochastic LQ control with linear
terminal constraint. It will be shown that the existence of optimal linear state feedback control by means of Lagrange
multiplier theorem. The outline of this paper is organized as follows. In Section 2, we give some definitions and
preliminaries. Section 3 contains our main theorems of discrete-time LQ control. A necessary condition and a sufficient

0096-3003/$ - see front matter � 2014 Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.amc.2013.09.036

q This work is supported by NSF of China (61170054, 61174078).
⇑ Corresponding author.

E-mail address: liuxikui@sdust.edu.cn (X. Liu).

Applied Mathematics and Computation 228 (2014) 264–270

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2013.09.036&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.09.036
mailto:liuxikui@sdust.edu.cn
http://dx.doi.org/10.1016/j.amc.2013.09.036
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


condition for the existence of optimal linear state feedback control are respectively derived. Finally, Section 4 concludes the
paper.

For convenience, we make use of the following basic notation in this paper: A0 is the transpose of a matrix A; trðAÞ the trace
of a square matrix A; A > 0ðA P 0Þ means that A is positive definite (positive semi-definite) symmetric matrix; E represents
the mathematical expectation; Rk the k-dimensional real vector space with the usual inner product h�; �iand the correspond-
ing 2-norm �k k; Rm�n the vector space of all m� n matrices with entries in R; SnðRÞ the set of all real symmetric matrices;
Nt ¼ f0;1;2; . . . ; tg.

2. Definitions and preliminaries

Consider the following discrete-time stochastic system:

xðt þ 1Þ ¼ A0ðtÞxðtÞ þ B0ðtÞuðtÞ½ � þ C0ðtÞxðtÞ þ D0ðtÞuðtÞ½ �xðtÞ; t 2 NT�1; ð1Þ

bi1x1ðTÞ þ bi2x2ðTÞ þ � � � þ binxnðTÞ ¼ ni ði ¼ 1;2; . . . ; rÞ: ð2Þ

where xð0Þ ¼ x0 2 Rn; xðtÞ 2 Rn and uðtÞ 2 Rm are respectively the system state and controlled input.
A0ðtÞ;C0ðtÞ 2 Rn;B0ðtÞ;D0ðtÞ 2 Rn�m; t 2 NT�1 are matrix-valued functions with appropriate dimensions. xðtÞ 2 R is a sequence
of real random variables defined on a complete probability space X; F;lf g, which is a wide sense stationary, second-order
process with EðxðtÞÞ ¼ 0 and EðxðtÞxðsÞÞ ¼ dst with dst being a Kronecker function. We denote Ft the r-algebra generated

by xðsÞ, i.e., Ft ¼ rðxðsÞ : s 2 NtÞ. uð�Þ belongs to the admissible control set Uad ¼ uðtÞ 2 Rm : E
PT

t¼0 uðtÞj j2 < þ1
n o

. ni is FT

measurable square integrable stochastic process, namely E nij j < þ1. bij is given real constant, i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . n.
Let Nr�n ¼ ðbijÞr�n; n ¼ ðn1; n2; . . . ; nrÞ0, then (2) can be rewritten as NxðTÞ ¼ n, where suppose N has row full rank.

We first give some useful definitions and lemmas that are necessary for the proofs of our main results.

Definition 2.1 [14]. Let X be a vector space, Y a normed space, and T a transformation defined on a domain D � X and having
range R � Y . Let x 2 D and let h be arbitrary in X. If the limit

dTðx; hÞ ¼ lim
a!0

1
a

Tðxþ ahÞ � TðxÞ½ �; ð3Þ

exists, it is called the Gateaux differential of T at x with increment h. If the limit (3) exists for each h 2 X, the transformation T
is said to be Gateaux differentiable at x.

Definition 2.2 [14]. Let T be a transformation defined on an open domain D in a normed space X and having range in a
normed space Y. If for fixed x 2 D and each h 2 X there exists dTðx; hÞ 2 Y which is linear and continuous with respect to
h such that

lim
khk!0

kTðxþ hÞ � TðxÞ � dTðx; hÞk
khk ¼ 0: ð4Þ

Then T is said to be Frechet differentiable at x and dTðx; hÞ is said to be the Frechet differential of T at x with increment h.

Definition 2.3 [14]. Let T be a continuously Frechet differentiable transformation from an open set D in a Banach space X
into a Banach space Y. If x0 2 D is such that dTðx0; hÞ maps X onto Y, the point x0 is said to be a regular point of the
transformation T.

Lemma 2.4 (Lagrange multiplier [14]). If the continuously Frechet differentiable functional f has a local extremum under the con-
stant HðxÞ ¼ 0 at the regular point x0, then there exists an element z�0 2 Z� such that the Lagrangian functional

LðxÞ ¼ f ðxÞ þ z�0HðxÞ ð5Þ

is stationary at x0, i.e. f 0ðx0Þ þ z�0H0ðx0Þ ¼ 0.
For later use, we recall the pseudo-inverse of a matrix.

Lemma 2.5 [15]. Let a matrix M 2 Rm�n be given. Then there exists a unique matrix Mþ 2 Rn�m, which is called the
Moore–Penrose pseudo inverse of M, such that

MMþM ¼ M; MþMMþ ¼ Mþ;

ðMMþÞ0 ¼ MMþ; ðMþMÞ0 ¼ MþM:

(
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