On the number of zeros of Abelian integrals for a kind of quartic Hamiltonians ${ }^{\text {it }}$

Juanjuan $\mathrm{Wu}^{\mathrm{a}, *}$, Yongkang Zhang ${ }^{\mathrm{b}}$, Cuiping Li^{a}
${ }^{\text {a }}$ LMIB and School of Mathematics and Systems Science, Beihang University, Beijing 100191, PR China
${ }^{\mathrm{b}}$ School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, PR China

A R T I C L E I N F O

Keywords:
Weakened Hilbert 16th problem
Abelian integrals
Quartic Hamiltonian
Poincare bifurcation

Abstract

An explicit upper bound $B(n)$ is derived for the number of zeros of Abelian integrals $I(h)=\oint_{\Gamma_{h}} g(x, y) d x-f(x, y) d y$ on the open interval $(0,1 / 4)$, where Γ_{h} is an oval lying on the algebraic curve $H(x, y)=x^{2}+y^{2}-x^{4}+a x^{2} y^{2}+y^{4}$ with $a>-2, f(x, y)$ and $g(x, y)$ are polynomials in x and y of degrees not exceeding n. Assume $I(h)$ not vanish identically, then $B(n) \leq 3\left[\frac{n-1}{4}\right]+12\left[\frac{n-3}{4}\right]+23$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and main results

Consider the perturbated polynomial Hamiltonian systems:

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial y}+\varepsilon f(x, y) \tag{H}\\
\dot{y}=-\frac{\partial H}{\partial x}+\varepsilon g(x, y)
\end{array}\right.
$$

where ε is a small parameter, $H(x, y), f(x, y)$ and $g(x, y)$ are real polynomials in x and y with $\operatorname{deg} H=d+1, \max \{\operatorname{deg} f, \operatorname{deg} g\}=n . H(x, y)$ is called a first integral of the vector field $(H)_{\varepsilon=0}$. Suppose that the Hamiltonian system $(H)_{\varepsilon=0}$ has at least one center. Consider the continuous family of ovals

$$
\Gamma_{h} \subset\left\{(x, y) \in \mathbb{R}^{2}: H(x, y)=h\right\}
$$

which are defined on a maximal open interval $\Sigma=\left(h_{c}, h_{s}\right)$. Then the zeros of the displacement function

$$
P_{\varepsilon}(h)-h=\varepsilon I(h)+O\left(\varepsilon^{2}\right),
$$

gives the limit cycles of $(H)_{\varepsilon}$. The first coefficient $I(h)$ in the above expansion in ε is given by

$$
\begin{equation*}
I(h)=\oint_{\Gamma_{h}} g(x, y) d x-f(x, y) d y, \quad h \in \Sigma, \tag{1}
\end{equation*}
$$

which is called the Abelian integral. Then the weakened Hilbert 16th problem, initially posed by Arnold[1], is to find an upper bound $Z(d, n)$ of the number of zeros of the Abelian integral. Khovansky[7] and Varchenko[13] proved independently that it depends only on the degrees of polynomials $H(x, y), f(x, y)$ and $g(x, y)$, but an explicit expression for $Z(d, n)$ is unknown.

[^0]It is natural to think about the possibility to find $Z(d, n)$ exactly for lower d, which was completed by several authors for $d=2$. In [5], Horozov \& Iliev put any cubic Hamiltonian $H(x, y)$ having a critical point of a center type at the origin via affine change of variables into a normal form

$$
\begin{equation*}
H(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-\frac{1}{3} x^{3}+a x y^{2}+\frac{1}{3} b y^{3} . \tag{2}
\end{equation*}
$$

A series of results achieved $Z(2,2)=2$ by Horozov \& Iliev [5], Gavrilov [3], Li \& Zhang [9]. Petrov [10] found $Z(2, n) \leqslant n-1$ for $H(x, y)=y^{2}+x^{3}-x$. Gavrilov [2] gave $Z(2, n) \leqslant[(2 / 3)(n-1)]$ for $H(x, y)=(1 / 2)\left(x^{2}+y^{2}\right)-(1 / 3) x^{3}+x y^{2}$. Horozov \& Iliev [6] concluded $Z(2, n) \leq 5 n+15$ for system (2).

The main results about $Z(d, n)$ for $d=3$ is for elliptic Hamiltonian $H(x, y)=y^{2} / 2+U(x)$ where $U(x)$ is a real polynomial in x of degree at most four. For some cases with certain symmetric properties, such as $U(x)=x^{4}-x^{2}, U(x)=x^{2}-x^{4}$ and $U(x)=x^{3}-x, Z(d, n)$ has been estimated by Petrov [10-12]. For general case, Zhao \& Zhang [14] divided $H(x, y)=y^{2} / 2+U(x)(\operatorname{deg} U(x)=4)$ into four normal forms and stated $Z(3, n) \leqslant 7 n+5$.

There are few results about $Z(d, n)$ for $d \geqslant 3$ because of the complicated structure of Abelian integrals $I(h)$, see [4,15]. In this paper, we consider a kind of quartic Hamiltonian systems $H(x, y)=x^{2}+y^{2}-x^{4}+a x^{2} y^{2}+y^{4}$ where $a>-2$ is a constant, which can be rewritten as the planar form

$$
\left\{\begin{array}{l}
\dot{x}=2 y\left(1+a x^{2}+2 y^{2}\right) \tag{3}\\
\dot{y}=-2 x\left(1-2 x^{2}+a y^{2}\right) .
\end{array}\right.
$$

The system (3) for $a>-2$ has three critical points: the saddles $S_{1}(-\sqrt{2} / 2,0), S_{2}(\sqrt{2} / 2,0)$ and the center $O(0,0)$. The periodic orbits surrounded the center and bounded by a heteroclinic loop, see Fig. 1. The critical level corresponding to the center is $h_{c}=0$, and the critical levels corresponding to the saddles is $h_{s}=1 / 4$.

We denote by $B(n)$ the upper bound of the numbers of zeros of Abelian integral $I(h)$ for $h \in(0,1 / 4)$ and $n=\max \{\operatorname{deg} f, \operatorname{deg} g\}$. Our main result is the following theorem.

Theorem 1. For the Hamiltonian

$$
\begin{equation*}
H(x, y)=x^{2}+y^{2}-x^{4}+a x^{2} y^{2}+y^{4}=h \tag{4}
\end{equation*}
$$

with $a>-2, B(n) \leq 3\left[\frac{n-1}{4}\right]+12\left[\frac{n-3}{4}\right]+23$. Moreover, $B(1)=B(2)=0, B(3)=B(4) \leq 15$.

2. The algebraic structure of Abelian integral

We shall express the Abelian integral as a linear combination of several basic integrals with polynomial coefficients in this section.

Proposition 1. For the Hamiltonian (4), if $a>-2$, then the Abelian integral $I(h)$ can be expressed as follows

$$
\begin{equation*}
I(h)=\alpha(h) I_{01}+\beta(h) I_{03}+\gamma(h) I_{21}+\delta(h) I_{23}, \tag{5}
\end{equation*}
$$

where $I_{i, j}(h)=\oint_{\Gamma_{h}} x^{i} y^{j} d x, \alpha(h), \beta(h), \gamma(h)$ and $\delta(h)$ are real polynomials in h, and $\operatorname{deg} \alpha(h) \leqslant\left[\frac{n-1}{4}\right]=p$, $\operatorname{deg} \beta(h)=\operatorname{deg} \gamma(h) \leqslant\left[\frac{n-3}{4}\right]=q, \operatorname{deg} \delta(h) \leqslant\left[\frac{n-1}{4}\right]-1=p-1$.

Proof. We split the proof into several steps.
(1) Suppose that $H(x, y)=h$ contains a family of closed ovals Γ_{h} surrounding the origin as $h \in \Sigma=(0,1 / 4)$, then Γ_{h} are symmetric with respect to the coordinate axes. Obviously, $I_{i, 2 m}(h)=I_{2 l+1,2 m+1}(h) \equiv 0$. So we only need to consider $I_{2 l, 2 m+1}(h)$. Therefore, by Green formula we obtain

Fig. 1. Phase portrait of (3) for $a>-2$.

https://daneshyari.com/en/article/4628342

Download Persian Version:
https://daneshyari.com/article/4628342

Daneshyari.com

[^0]: Supported by NNSF No. 61134005 and No. 11271046.

 * Corresponding author.

 E-mail address: magic709@ss.buaa.edu.cn (J. Wu).

