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a b s t r a c t

A numerical integration scheme based on closed Newton–Cotes formulas is first proposed
for calculating the response statistics of a dynamic system under Gaussian white noise
excitation. Accurate system response results down to very low probability levels have been
obtained by utilizing the high-degree closed Newton–Cotes formulas for the numerical
integration algorithm. The computational efficiency of the numerical integration scheme
is found to be very high. The proposed Newton–Cotes scheme is also compared with the
Gauss–Legendre scheme in the existing literature. It is found that the Newton–Cotes algo-
rithm is easy to develop because Newton–Cotes quadrature uses values of the integrand at
equally-spaced abscissas and the values of the quadrature coefficients are easily calculated.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The response statistics of a linear structural system under additive Gaussian white noise excitation is known to be
Gaussian. The response of a multidimensional nonlinear system subject to additive and/or multiplicative Gaussian white
noise excitations is a Markov vector process. During the past several decades, various numerical methods have been
developed for calculating the responses of structural systems under stochastic excitations. The numerical path integration
solution is one such method that has been developed for predicting the responses of both linear and nonlinear systems.
In the numerical path integral solution, efforts have been made by researchers to employ various kinds of interpolation
procedures in order to increase the numerical efficiency. Wehner and Wolfer [1] used a piecewise constant interpolation
scheme and their numerical method had predicted a too low peak and somewhat higher tail in the probability distribution.
After a certain point this discrepancy could not be further reduced by choosing smaller time intervals. Wehner and Wolfer
suggested that the numerical accuracy could be improved by employing a better interpolation procedure. Another kind of
numerical path integral developed by Hsu and Chiu [2,3] is called a cell mapping method, and their basic idea is to consider
the state space not as a continuum but rather as a collection of a large number of state cells with each cell being taken as a
state entity. This method is similar to path integration with a piecewise constant interpolation scheme. The computation is
quite intensive when using this method. Although short-time Gaussian approximation of the transition probability density
has been used in the generalized cell mapping method [4] in order to improve the computing efficiency, a very large number
of fine cells still need to be divided in a specific computation domain in order to improve the accuracy of the calculation
results. In order to get system response results with high accuracy, Naess and Johnson [5,6] proposed another numerical
scheme, and they employed a cubic B-spline interpolation procedure to increase the numerical efficiency. Marginal proba-
bility density values accurate to the order of 10�10 had been achieved [7], and this is very important for the prediction of the
extreme responses. However, as we will see in the paper, there is still much room for the improvement of the accuracy of the
response statistics by utilizing other numerical schemes. One such scheme is a Gauss–Legendre integration scheme [8,9] in
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which an implicit interpolation procedure has been employed. The essence of this integration scheme is that the values of
the system response probability density are calculated at the Gauss quadrature points in sub-intervals, and the desired accu-
racy can be achieved with enough Gaussian points. However, Gauss–Legendre quadrature uses values of the integrand at
oddly-spaced abscissas and the values of the quadrature coefficients are somewhat not easily calculated. Therefore, the
Gauss–Legendre integration algorithm is somewhat complicated. Meanwhile, careful attention should be paid to the trans-
formation of an arbitrary interval of integration to a standard one when using the Gauss–Legendre quadrature. The Newton–
Cotes quadrature integration scheme proposed in this paper has the advantage of being able to obtain the system response
results as highly accurate as the ones obtained by using the Gauss–Legendre scheme. Meanwhile, the Newton–Cotes algo-
rithm is easy to develop because Newton–Cotes quadrature uses values of the function at equally-spaced points and the val-
ues of the quadrature coefficients are easily calculated.

2. Theoretical basis of the path integral solution

A Langevin equation of the type [10],

_xi þ
XN

j¼1

cijxj ¼ FiðtÞ; i ¼ 1;2; . . . ;N ð1Þ

with d-correlated Gaussian distributed Langevin forces [10]

E½FiðtÞ� ¼ 0; E½FiðtÞFjðt0Þ� ¼ qijdðt � t0Þ; qij ¼ qji ð2Þ

describes a process which is called an Ornstein–Uhlenbeck process. In Eq. (1) xi is the system response state variable and cij is
a coefficient of constant. The essential feature is that the homogeneous equations (1) are linear and that the coefficients qij

describing the strength of the noise do not depend on the variable xk. It should be noted that with a vanishing matrix cij

(cij = 0) the process described by (1), (2) is called a Wiener process. For one stochastic variable x, the general Langevin equa-
tion has the form [10]:

_x ¼ hðx; tÞ þ gðx; tÞFðtÞ ð3Þ

where h and g are functions of variables x and t. The Langevin force F(t) is again assumed to be a Gaussian random variable
with zero mean and d correlation function. For constant g, (3) is called a Langevin equation with an additive noise force. For g
depending on x one speaks of a Langevin equation with a multiplicative noise term. The process described by (3) with d cor-
related Langevin forces is a Markov process, i.e. its conditional probability at time tn depends only on the value x(tn�1) = xn�1

at the next earlier time. Usually a formal general solution of the stochastic differential equation (3) cannot be given. How-
ever, we can set up a Fokker–Plank equation by which the probability density of the stochastic variable can be calculated.
The Fokker–Plank equation for one variable x has the form [10]:

@pðx; tjx0; t0Þ
@t

¼ � @

@x
Dð1Þðx; tÞ þ @2

@x2 Dð2Þðx; tÞ
" #

pðx; tjx0; t0Þ: ð4Þ

In (4) D(1)(x) is called the drift coefficient and D(2)(x) the diffusion coefficient. The conditional probability pðx; tjx0; t0Þ is called
a transition probability density. Mathematically, Eq. (4) is a linear second-order partial differential equation of parabolic
type. In [10] an expression for the transition probability density has been developed for a short time step s up to the correc-
tions of the order s2 in the following form:

pðx; t þ sjx0; tÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDð2Þðx0; tÞs

q exp � ½x� x0 � Dð1Þðx0; tÞs�2

4Dð2Þðx0; tÞs

" #
: ð5Þ

The above transition probability density is needed for the path integral solutions. By repeatedly applying the Chapman–
Kolmogorov equation

pðx3; t3jx1; t1Þ ¼
Z

pðx3; t3jx2; t2Þpðx2; t2jx1; t1Þdx2 ð6Þ

we can express the evolution of p(x, t) from the initial distribution p(x0, t0) in terms of the transition probability density.
Dividing the time difference t � t0 into N small time intervals of length s = (t � t0)/N, we have (tn = t0 + ns):

pðx; tÞ ¼
Z

dxN�1

Z
dxN�2 . . .

Z
dx0pðx; tjxN�1; tN�1ÞpðxN�1; tN�1jxN�2; tN�2Þ . . . pðx1; t1jx0; t0Þpðx0; t0Þ: ð7Þ

For N ?1 we may use for the transition probability function the expression (5) for small s, which then gives correct
expectation values of p(x, t) in the limit N ?1. Inserting (5) into (7) and taking the limit N ?1 we obtain with xN = x,
[s = (t � t0)/N]
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