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a b s t r a c t

This paper deals with the stability of Runge–Kutta methods applied to the complex linear
system u0ðtÞ ¼ LuðtÞ þMuð½t�Þ. The condition under which the numerical solution is asymp-
totically stable is presented, which is stronger than A-stability and weaker than Af -stability.
Furthermore, in the case of 2-norm and L being a real symmetric matrix, by using Pad�e
approximation and order star theory, it is proved that for A-stable Runge–Kutta methods,
suppose whose stability function is given by the ðr; sÞ-Pad�e approximation to ex , the numer-
ical solution is asymptotically stable if and only if r is even.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the stability of the numerical solution of the following differential equation with piecewise contin-
uous argument(EPCA):

u0ðtÞ ¼ LuðtÞ þMuð½t�Þ; t P 0;
uð0Þ ¼ u0;

�
ð1:1Þ

where L;M 2 Cd�d; L is nonsingular, u0 2 Cd is a given initial value, and ½�� denotes the greatest integer function. The general
form of EPCA is

u0ðtÞ ¼ f ðt;uðtÞ;uðaðtÞÞÞ; t P 0;
uð0Þ ¼ u0;

�
ð1:2Þ

where the argument aðtÞ has intervals of constancy. This kind of equations has been initiated by Wiener [26,28], Cooke and
Wiener [4], and Shah and Wiener [21]. The general theory and basic results for EPCA have by now been thoroughly inves-
tigated in the book of Wiener [27]. The task of investigating EPCA is also of considerable applied interest since they include,
as particular cases, impulsive and loaded equations of control theory and are similar to those found in some biomedical
models.

Many real-life phenomena in physics, engineering, biology, medicine, economics, etc. can be modeled by a delay differ-
ential equation, and recently there are many literatures focused on this domain [1,2,5,9–11,14,16,30] etc. Particularly, in
[30], the linear constant delay differential equation

u0ðtÞ ¼ LuðtÞ þMuðt � sÞ ð1:3Þ
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is studied, where kMk < �l½L�. It is said that the Runge–Kutta method with h ¼ s=m applied to (1.3) is stable if and only if it
is A-stable. Moreover, in [1], the linear variable delay differential equation

u0ðtÞ ¼ auðtÞ þ buðt � sðtÞÞ ð1:4Þ

is considered, where jbj < �RðaÞ. And it is said that the Runge–Kutta method applied to (1.4) is stable if and only if it is
Af -stable, but in fact, the set of Af -stable Runge–Kutta methods is very meager.

In virtue of (1.1) being a special variable delay differential equation, the numerical stability condition between A-stability
and Af -stability is expected. In fact, the condition presented in Theorem 4.5 in the following shows it is stronger than
A-stability and weaker than Af -stability. Furthermore, it seems to us that the strong interest in differential equation with
piecewise constant arguments is motivated by the fact that it describes hybrid dynamical system (a combination of contin-
uous and discrete). These equations have the structure of continuous dynamical systems within intervals of unit length.
Continuity of a solution at a point joining any two consecutive intervals implies recurrent relations for the values of the
solution at such points. Therefore, they combine the properties of differential equations and difference equations.

There are also some authors who have considered the stability of numerical solutions for this kind of equations (see
[7,15,17–20,22–24,29] etc.), but all of the above articles are based on real scaler problems.

Definition 1.1 (Wiener [27]). A solution of (1.1) on ½0;1Þ is a function uðtÞ that satisfies the following conditions:

1. uðtÞ is continuous on ½0;1Þ.
2. The derivative u0ðtÞ exists at each point t 2 ½0;1Þ, with the possible exception of the point ½t� 2 ½0;1Þ, where one-sided

derivatives exist.
3. (1.1) is satisfied on each interval ½k; kþ 1Þ � ½0;1Þ with integral endpoints.

Theorem 1.2 (Wiener [27] ). Problem (1.1) has on ½0;1Þ a unique solution uðtÞ ¼ M0ðftgÞB½t�0 u0, where M0ðtÞ ¼
eLt þ ðeLt � IÞL�1M;B0 ¼ eL þ ðeL � IÞL�1M and ftg is the fractional part of t.

2. The stability of the analytic solution

In this section we will give a sufficient condition under which the analytic solution of (1.1) is asymptotically stable.

Definition 2.1 (asymptotic stability). If any solution uðtÞ of system (1.1) satisfies

lim
t!1

uðtÞ ¼ 0;

then the zero solution of system (1.1) is called asymptotically stable.

Lemma 2.2 (Wiener [27] ). The zero solution of system (1.1) is asymptotically stable if and only if qðB0Þ < 1.
In the paper, we always assume that k � k denotes the matrix norm induced by a vector norm on Cd and l½�� denotes the

logarithmic norm of the matrix (see Dekker [6]), defined by

l½L� ¼ lim
M!0þ

kId þ MLk � 1
M

;

where Id is the d� d identity matrix.

Theorem 2.3. The zero solution of system (1.1) is asymptotically stable if

ðiÞ l½L� < 0;
ðiiÞ kMk < �l½L�:

�
ð1:1Þ

Proof. On one hand

kB0k ¼ keL þ ðeL � IÞL�1Mk 6 el½L� þ kðeL � IÞL�1kkMk:

On the other hand, by the condition ðiÞ, we know that l½L�–0, so

kðeL � IÞL�1k ¼ k
Z 1

0
eLsdsk 6

Z 1

0
keLskds 6

Z 1

0
el½L�sds ¼ 1

l½L� ðe
l½L� � 1Þ:

Noting that el½L� � 1 and l½L� have the same sign, by the second condition kMk < �l½L� in (1.1), we have
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