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a b s t r a c t

In this paper we consider the implementation of the asymptotic Filon-type method for the
semi-infinite highly oscillatory Bessel integrals of the form

R1
1 f ðxÞCv ðxxÞdx, where Cv ðxxÞ

denotes Bessel function Jv ðxxÞ of the first kind, Yv ðxxÞ of the second kind, Hð1Þv ðxxÞ and
Hð2Þv ðxxÞ of the third kind, and modified Bessel function Kv ðxxÞ of the second kind, respec-
tively, f is a smooth function on ½1;1Þ, limx!1f ðkÞðxÞ ¼ 0 ðk ¼ 0;1;2; . . .Þ and x is large. By
approximating f by a linear combination of negative integer powers so that the moments
can be expressed by some special functions, we complete the implementation of the
method. Furthermore, we give the error analysis of the method for computing the integrals.
The method is very efficient in obtaining very high precision approximations if x is suffi-
ciently large. Numerical examples are provided to confirm our analysis.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are concerned with the numerical evaluation of the integrals with a highly oscillatory Bessel kernel of the
form

I½f � ¼
Z 1

1
f ðxÞCvðxxÞdx; x� 1; ð1:1Þ

where f is a sufficiently smooth function on ½1;1Þ, limx!1f ðkÞðxÞ ¼ 0 ðk ¼ 0;1;2; . . .Þ, Cv ðxxÞ denotes Bessel function JvðxxÞ of
the first kind, Yv ðxxÞ of the second kind, Hð1Þv ðxxÞ and Hð2Þv ðxxÞ of the third kind, and modified Bessel function Kv ðxxÞ of the
second kind, the order v is arbitrary positive real number. For large x, the integrand f ðxÞCv ðxxÞ becomes highly oscillatory
and presents serious difficulties in obtaining numerical convergence of the integrations (see [1–10]). This means that some
general numerical methods may not be immediately applicable to the integrals. In the last decades, numerical approxima-
tions of

R b
a f ðxÞJvðxxÞdx (0 6 a < b < þ1) have received a lot of attentions and have been the subject of a vast research by

many authors (see, e.g., [5–21] and the references therein). The asymptotic method, Filon-type method and Levin-type meth-
od are among most important numerical methods. Nevertheless, for the case when the integration interval is unbounded, the
literature is not so rich.

For
R b

a f ðxÞJvðxxÞdx and 0 R ½a; b�, the errors of the existing methods (the asymptotic method, Filon-type method and Le-
vin-type method) are Oðx�n�3

2Þ [13]. It illustrates that these methods for computing this class of integrals have a common
property: the errors decay as the parameter x increases.

Recently, Shampine has taken up the basic algorithms on Filon method for approximating
R 1
�1 f ðxÞeixxdx and discusses

how they are used in an adaptive implementation [12]. Shampine has obtained the results by approximating f ðxÞ by using
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a truncated Chebyshev series expansion with the Chebyshev nodes and the Legendre polynomials with the Legendre nodes.
The author has shown three approaches to error estimation.

In [17], a method for computing
R 1

0 f ðxÞJv ðxxÞdx is presented, which is based on the Filon-type method. By interpolating

on j�1
N ; j

N

h i
at distinct nodes c1 ¼ j�1

N ; c2 ¼ 2j�1
2N ; c3 ¼ j

N by parabolic interpolation PðxÞ and c1 ¼ j�1
N ; c2 ¼ j

N by Hermite inter-

polation SðxÞ, respectively, where N is a positive integer and j ¼ 1;2; . . . ;N, and following [2], there exists

I½f � �
Z 1

0
PðxÞJvðxxÞdx; I½f � �

Z 1

0
SðxÞJvðxxÞdx ð1:2Þ

with the errors

I½f � �
Z 1

0
PðxÞJvðxxÞdx

����
���� 6

ffiffiffi
3
p

Ah3

36
ffiffiffiffiffi
x3
p max

06x61
jf ð3ÞðxÞj ð1:3Þ

and

I½f � �
Z 1

0
SðxÞJvðxxÞdx

����
���� 6 Ah4

384
ffiffiffiffiffi
x3
p max

06x61
jf ð4ÞðxÞj; ð1:4Þ

where A is some constant and h ¼ 1
N.

In [15], a different method is explored for
R b

a f ðxÞJvðxxÞdx and 0 R ½a; b� which is based on a truncation of the asymptotic
series. In the formZ b

a
ð0; f ðxÞÞT � ðJv�1ðxxÞ; JvðxxÞÞT dx ¼

Z b

a
FðxÞ �Wðx; xÞdx; ð1:5Þ

where ‘‘�’’ denotes the inner product, since

W 0ðx; xÞ ¼
v�1
x �x
x � v

x

 !
Wðx; xÞ ¼ Aðx; xÞWðx; xÞ; ð1:6Þ

then by letting Bðx; xÞ ¼ 1
x Aðx; xÞ
� �T and

F1ðxÞ ¼ FðxÞ

Fkþ1ðxÞ ¼ ðBTðx; xÞFkðxÞÞ
0
; k ¼ 1;2; � � � ;

ð1:7Þ

the asymptotic method is achieved byZ b

a
f ðxÞJvðxxÞdx �

Xs

m¼1

ð�1Þmþ1

xm
½FmðxÞ � Bðx; xÞWðx; xÞ�ba ð1:8Þ

with the error Oðx�s�3=2Þ. In particular, for limx!1f ðkÞðxÞ ¼ 0 ðk ¼ 0;1;2; . . .Þ and b ¼ 1, the asymptotic method can be de-
fined simply asZ b

a
f ðxÞJvðxxÞdx �

X1
m¼1

ð�1Þm

xm
FmðaÞ � Bðx; aÞWðx; aÞ: ð1:9Þ

In many physical applications, especially in the solution of certain mixed boundary value problems, we always encounter
the integrals involving Bessel functions of the formZ 1

0
f ðxÞCvðxxÞdx: ð1:10Þ

Since
R1

0 ¼
R 1

0 þ
R1

1 and
R 1

0 can be computed accurately by Xiang’s ideas [17], then our key works are to compute the infinite
integrals (1.1). In fact, for the case limx!1f ðxÞ ¼ A (where A is a constant), the integrals (1.1) become

I½f � ¼
Z 1

1
½f ðxÞ � A�CvðxxÞdxþ A

Z 1

1
CvðxxÞdx: ð1:11Þ

Obviously, the function f ðxÞ � A satisfies the conditions of (1.1). From Eqs. 9.34–1(2/3) of [22], we have

xkJmðxxÞ ¼ xkG1;0
0;2

x2x2

4

��� m
2 ; � m

2

 !
; ð1:12Þ

xkYmðxxÞ ¼ xkG2;0
1;3

x2x2

4

��� � mþ1
2

� m
2 ;

m
2 ; � mþ1

2

 !
; ð1:13Þ
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