
On stable manifolds for planar fractional differential equations

N.D. Cong a, T.S. Doan a,b, S. Siegmund c,⇑, H.T. Tuan a

a Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Viet Nam
b Department of Mathematics, Imperial College London, 180 Queen’s Gate, SW7 2AZ London, United Kingdom
c Center for Dynamics, Technical University Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany

a r t i c l e i n f o

Keywords:
Fractional differential equations
Caputo derivative
Stable manifold theorem

a b s t r a c t

In this paper, we establish a local stable manifold theorem near a hyperbolic equilibrium
point for planar fractional differential equations. The construction of this stable manifold
is based on the associated Lyapunov–Perron operator. An example is provided to illustrate
the result.
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1. Introduction

In recent years, fractional differential equations have attracted increasing interest due to the fact that many mathematical
problems in science and engineering can be modeled by fractional differential equations, see e.g. [4,15,18]. Although several
results on asymptotic behavior of fractional differential equations are already published (e.g. on stability theory [3,8], linear
theory [1,12], Lyapunov exponents [1,9], etc.), the development of a qualitative theory for fractional differential equations is
still in its infancy. One of the reasons for this fact might be that general nonlinear fractional differential equations do not
generate semigroups and the well-developed qualitative theory for dynamical systems cannot be applied directly.

In this paper we prove a stable manifold theorem for hyperbolic equilibria of fractional differential equations. We con-
struct Lipschitz manifolds for two dimensional systems and omit all the technicalities which come into play when dealing
with smoothness issues and exponential dichotomies – both well-know techniques for the construction of invariant mani-
folds for classical differential equations – and focus on those aspects related to Mittag–Leffler functions which are new in the
construction of stable manifolds for fractional differential equations. We define a Lyapunov–Perron operator, using a solution
representation formula [1] which provides the link between solutions of the nonlinear system and its linearization at the
hyperbolic equilibrium. The unique parameter dependent fixed point of this operator describes the set of all solutions near
the fixed point which tend to zero when time tends to infinity. This set is called the stable manifold of the hyperbolic fixed
point of the fractional differential equation and our main result in this paper is to show that this stable manifold is the graph
of a Lipschitz continuous function.

The paper is organized as follows: in Section 2, we recall some fundamental results on fractional calculus and fractional
differential equations. Section 3 is devoted to the main result of this paper about stable manifolds for planar fractional dif-
ferential equations. In Section 4 we conclude by summarizing the achievements in this paper and pointing out immediate
extensions and related research questions.

To conclude this introductory section, we introduce notation which is used throughout this paper. Let RP0 denote the set
of all nonnegative real numbers. For a Banach space ðX; k � kÞ, let C1ðXÞ; k � k1

� �
denote the space of all continuous functions

n : RP0 ! X such that
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knk1 :¼ sup
t2RP0

knðtÞk <1:

It is well known that C1ðXÞ; k � k1
� �

is a Banach space. Let R2 be endowed with the max norm, i.e. kxk ¼maxðjx1j; jx2jÞ for all
x ¼ ðx1; x2ÞT 2 R2. For r > 0, we define Brð0Þ :¼ fx 2 R2 : kxk 6 rg. For a Lipschitz continuous function f : R2 ! R2, define

‘f ðrÞ :¼ sup
x;y2Brð0Þ

kf ðxÞ � f ðyÞk
kx� yk :

2. Fractional differential equations

We start this section by briefly recalling an abstract framework of fractional calculus and the corresponding planar frac-
tional differential equations. We refer the reader to the books [4,7] for more details about the theory of fractional differential
equations.

Let a > 0 and ½a; b� � R. Let f : ½a; b� ! R be a measurable function such that f 2 L1ða; bÞ, i.e.
R b

a jf ðsÞj ds <1. Then, the
Riemann–Liouville integral operator of order a is defined by

ðIaaþf ÞðxÞ :¼ 1
CðaÞ

Z x

a
ðx� tÞa�1f ðtÞ dt for x > a;

where the Euler Gamma function C : ð0;1Þ ! R is defined as

CðaÞ :¼
Z 1

0
ta�1 expð�tÞ dt;

see e.g. [4]. The corresponding Riemann–Liouville fractional derivative is given by

ðDa
aþÞf ðxÞ :¼ ðDmIm�a

aþ f ÞðxÞ;

where D ¼ d
dx is the usual derivative and m :¼ dae is the smallest integer bigger or equal a. On the other hand, the Caputo

fractional derivative CDa
aþf of a function f 2 Cmð½a; b�Þ, which was introduced by Caputo (see e.g. [4]), is defined by

ðCDa
aþf ÞðxÞ :¼ ðIm�a

aþ Dmf ÞðxÞ; for x > a:

We refer the reader to [4, Chapters 2 and 3], for a discussion on the relation and also some advantages of the Caputo deriv-
ative in comparison to the Riemann–Liouville derivative. In this paper, we consider planar fractional differential equations
involving the Caputo fractional derivative

CDa
0þxðtÞ ¼ AxðtÞ þ f ðxðtÞÞ; ð1Þ

where a 2 ð0;1Þ; A 2 R2�2 and f : R2 ! R2 is a Lipschitz function in a neighborhood of the origin satisfying that

f ð0Þ ¼ 0 and lim
r!0

‘f ðrÞ ¼ 0: ð2Þ

Note that f fulfills condition (2) provided that f is C1 in a neighborhood of the origin with f ð0Þ ¼ 0 and Df ð0Þ ¼ 0. Assume that
for any initial value x 2 R2, the initial value problem (1), xð0Þ ¼ x, has a unique solution denoted by uð�; xÞwhich is defined on
the whole interval RP0. This is for instance the case if f is globally Lipschitz, see e.g. [10, Theorem 3.1].

For f ¼ 0, system (1) reduces to a linear time-invariant fractional differential equation

CDa
0þxðtÞ ¼ AxðtÞ: ð3Þ

As shown in [1], EaðtaAÞx solves (3) with the initial condition xð0Þ ¼ x, where the Mittag–Leffler matrix function EaðAÞ for a
matrix A 2 R2�2 is defined as

Ea;bðAÞ :¼
X1
k¼0

Ak

Cðakþ bÞ ; EaðAÞ :¼ Ea;1ðAÞ:

If the nonlinear term f does not vanish, it is in general impossible to provide an explicit form of the solution of (1), xð0Þ ¼ x.
However, we get a presentation of solutions for (1) by using the Mittag–Leffler matrix function. We refer the reader to [1,7]
for a proof of this result. See also [11] for solution representation.

Theorem 1 (Solution representation formula for fractional differential equations). The solution uð�; xÞ of (1), xð0Þ ¼ x, satisfies
for t 2 RP0

uðt; xÞ ¼ EaðtaAÞxþ
Z t

0
ðt � sÞa�1Ea;aððt � sÞaAÞf ðuðs; xÞÞ ds: ð4Þ

By virtue of the above formula, in order to investigate asymptotic behavior of solutions of (1), it is helpful to understand
the asymptotic behavior of the Mittag–Leffler function Ea;b : R! R defined as
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