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a b s t r a c t

In this paper, the behavior of dynamics ‘at infinity’ of a four-dimensional autonomous food
web system has been investigated. For this, a topological method has been developed to
understand the geometry of the Poincaré compactification which investigate the behavior
of the vector field at infinity. The global phase portrait has been shown on the Poincaré disc.
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1. Introduction

The projection of the real line on a circle is a type of compactification that was known to Greek mathematicians before the
development of the theory of dynamical systems. The French mathematician and theoretical physicist Jules Henri Poincaré
ð1854� 1912Þ began to study the qualitative aspects of systems of differential equations in the late nineteenth century. This
analysis was a breakthrough in the field of dynamical systems because one no longer had to obtain a specific solution of the
equation in question to understand its general behavior. This manner of analysis was introduced by Poincaré in his paper
Mémoire sur les courbes définies par une équation différentielle’’ [1]. Poincaré worked primarily with systems of two variables
and played a key role in identifying the existence of limit cycles with the Poincaré-Bendixson theorem. Poincaré also
searched for a complete global analysis of a system of two variables; to do so he introduced analysis at infinity by means
of the Poincaré Sphere. These two aspects of his analysis join in a behavior known as a limit cycle at infinity [2,3].

In 1881 Poincaré studied limit cycles at infinity of two dimensional polynomial differential equations via compactifica-
tion. The main idea of this method is to identify Rn with northern and southern hemispheres through simple projections,
then the vector field X on Rn can be extended to a vector field ~X on Sn. This method is called the Poincaré compactification.

The study of solutions escaping to infinity has been an important tool in order to understand the global picture of a
dynamical system in Rn. The compactification technique consists in writing the equations of motion as a vector field and
then applying the Poincaré compactification, which is a method to extend analytically the vector field to a compact manifold,
in fact to a sphere. This tool or method is very important to study the qualitative dynamic of the flow at infinity or in the
unbounded part. From the behavior of the Poincaré sphere, one can construct the ‘‘global phase portrait’’ without knowing
the exact analytic solutions [3,4].

Through the use of projective geometry, the complete behavior of a two dimensional system of differential equations can
be seen in its behavior on a sphere of finite radius known as the Poincaré sphere. To do this, one places the phase plane tan-
gent to the sphere and makes correspond points on the plane with the points on the sphere by central projection (a point on
the plane corresponds with an antipodal pair on the sphere). One must note that the line intersects the sphere at two points;
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to remove this non-uniqueness, antipodal points are identified on the Poincaré sphere. The points that were at infinity on the
original plane become points on the equator of the sphere [2,5].

From the behavior on the Poincaré sphere, one can construct the global phase portrait [6,7]. To consider the global phase
portrait of a system, one projects the trajectories from the upper hemisphere orthogonally down onto the plane that goes
through the center of the sphere and is parallel to the original plane. In this way the complete behavior on the original plane
becomes the behavior on the finite disk of this new plane. Points at infinity become the points at which the sphere intersects
the plane the boundary of the disk. The first analysis that one would do for a system in the finite plane is to find the location
of the fixed points. With this as motivation, the primary problem of analyzing the behavior of a system at infinity is to deter-
mine the location of fixed points, if there are any.

Then, in each case they give a global expressions for the Poincaré compactification. As an application, and using the fact
that the vector field of the n-body problem can always be written in the form of a polynomial vector field (see [3] for exam-
ple), the Poincaré compactifications for the Kepler problem on the line and on the plane and for the collinear 3-body problem
are computed. The main disadvantage here for obtaining this polynomial vector field is the use (in general) of redundant
variables. Our purpose in this paper is to understand the geometry of the Poincaré compactification [see the Sections 1.1
and 1.2] and apply this technique in vector fields defined by rational functions. We will also give a global expressions for
the Poincaré vector field associated to nonlinear differential equations.

The dynamics ‘at infinity’ has not been received much attention, even though it was central to Poincaré’s analysis of qual-
itative dynamics. Before the development of the theory of dynamical systems, the qualitative approach involved defining
dynamics on a compact state space that is in fact the projective plane [1]. The recent development of dynamical systems
have less attention to the question of the pathological dynamics ‘far away’.

The aim of this paper is to understand the geometry of the Poincaré compactification of a four-dimensional continuous
dynamical system originally developed by Gakkhar et. al., [8]. This is an atttempt to establish Poincaré compactification in
four-dimensional food web systems.

1.1. Poincaré compactification

In [1], Poincaré studied the two dimensional polynomial vector fields on the plane R2, by means of central projection of
the paths on a sphere S2, tangent to the plane at the origin [1]. Thus he provided the means for studying the behavior of the
field on a neighborhood of infinity, which is represented by the equator S1.

Let P1 and P2 be the polynomials of arbitrary degrees d1 and d2 in the variables x1 and x2. Consider the following polyno-
mial vector field of degree d ¼ maxfd1; d2g in R2:

X ¼ P1ðx1; x2Þ
@

@x1
þ P2ðx1; x2Þ

@

@x2

In order to effect the Poincare construction we identify R2 with the hyperplane fx 2 R3 : x3 ¼ 1g, tangent to the sphere

S2 ¼ fy 2 R3 : y2
1 þ y2

2 þ y2
3 ¼ 1g ð1Þ

at the north pole. The sphere S2 defined in Eq. (1) is said to be Poincaré sphere and is tangent to R2 at the point ð0;0;1Þ.
The sets

S2
þ ¼fy 2 S2 : y3 > 0g

S2
� ¼fy 2 S2 : y3 < 0g ð2Þ

and S1 ¼fy 2 S2 : y3 ¼ 0g

are called the northern hemisphere, the southern hemisphere and the equator respectively. Now, consider the projection of
the vector field X from R2 to S2 is given by the central projections with the following two diffeomorphisms

fþðxÞ : R2 ! S2
þ ð3Þ

f�ðxÞ : R2 ! S2
�

such that

f�ðxÞ ¼ � x1

DðxÞ ;
x2

DðxÞ ;
1

DðxÞ

� �
; where DðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ 1

q

These maps send ðx1; x2Þ to one of the intersections of the line that join the origin with ðx1; x2;1Þ. The first map sends R2 dif-
feomorphically onto the northern hemisphere S2

þ, and the second map sends it onto the southern hemisphere S2
�. The equator

S1 corresponds to the infinity of R2.
This induced an analytically conjugate vector field �XðyÞ to vector field X in each hemisphere everywhere tangent to S2

such as �XðyÞ ¼ Df�ðxÞXðxÞ. Notice that the points at infinity of R2 are in bijective correspondence with the points of the equa-
tor of S2. If the vector field is multiplied by a factor qðxÞ ¼ xd�1

3 , then it is possible to extend the vector field from S2 n S1 to S2.
The extended vector field on S2 is called the Poincaré compactification of the vector field X.
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