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a b s t r a c t

In this work, we investigate the spatiotemporal dynamics of reaction–diffusion equations
subject to cross-diffusion in the frame of a two-dimensional ratio-dependent predator–
prey model. The conditions for diffusion-driven instability are obtained and the Turing
space in the parameters space is achieved. Moreover, the criteria for local and global
asymptotic stability of the unique positive homogeneous steady state without diffusion
are discussed. Numerical simulations are carried out in order to validate the feasibility of
the obtained analytical findings. Different types of spatial patterns through diffusion-dri-
ven instability of the proposed model are portrayed and analysed. Lastly, the paper finishes
with an external discussion of biological relevance of the analysis regarding cross-diffusion
and pattern issues.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

To study the population dynamics of interacting populations, a functional response of the predator to the prey density
refers to the change in the density of prey per unit time per predator as a function of the prey density. Michaelis–Menten
or Holling type II, an important and fashionable functional response is of the form

f ðuÞ ¼ pu
muþ n

;

where p > 0 is the maximal growth rate of the predator and m;n > 0 are the half-saturation constants. As f ðuÞ depends
exclusively on prey density, it is commonly known as prey-dependent Michaelis–Menten or Holling type II response function
[1–4]. Now-a-days, both ecologists and mathematicians are concentrated their attention to the ratio-dependent Michaelis–
Menten-type or Holling type II functional response of the form

f
u
v

� �
¼

p u
v

� �
m u

v

� �
þ n
¼ pu

muþ nv ;

where numerical and functional responses depend on the sizes of both predator and prey species, especially when predators
have to search for food and consequently have to share or compete for food. Modern field ecologists are interested in the
ratio-dependent predator–prey models where predator–prey interactions have to be taken into account by the process of
predation search [5–10]. Basically Holling type II functional response is mathematically and mechanistically very simple.
The Holling type II function can be obtained mechanistically and requires the natural assumption that a predator cannot
eat an unlimited amount of prey per unit of time. This simplicity allows the Holling type II functional response to be em-
ployed in a wide variety of models, ranging from simple two-dimensional models with one predator and one prey species
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to higher dimensional models involving, say, n1 prey and m1 predator species [11]. Modern ecological evidences suggest that
ratio-dependent functional response is more appropriate when predators have a highly competitive searching process
[12,13].

Studies on mechanisms and scenarios of spatiotemporal pattern formation in a system of interacting populations play an
important role in modern theoretical ecology. Also the studies of spatiotemporal dynamics of predator–prey models have
continued to be a vital issue to modellers since the pioneering work of Alan Turing [14]. A remarkable model for spatial pat-
tern formation was introduced in his study whereby a statement was put forward by him that a set of chemicals reacting and
diffusing throughout the tissues may exhibit spatial patterns under proper circumstances. In the theory of spatial pattern
formation via Turing instability, it has been made known that a nonlinear system is asymptotically stable in the absence
of diffusion but unstable in the presence of diffusion. This remarkable idea was destined to introduce a new scientific par-
adigm. Turing instability in reaction–diffusion system has been played as a mechanism for pattern formation in numerous
embryological and ecological contexts [9,15–22]. In recent times, reaction–diffusion mechanisms form perhaps the most
widely studied class of models for biological pattern formation and have been successfully applied to many patterning phe-
nomena in modern ecology, biology, and many other fields of science.

In the history of population biology, the importance of the stability behaviour of a system of ratio-dependent Holling type
II predator–prey model by taking into account the effect of self as well as cross-diffusion has received much less attention in
the literature than other models, though interest is growing in the recent time for its spontaneous application in various
branches of modern science. In recent years, many authors pay their attention to investigate the stability behaviour of a sys-
tem of interacting populations by taking into account the effect of self as well as cross-diffusion [23–29]. Keeping all these in
mind, an attempt is made here to investigate the role of cross-diffusion co-efficients on the spatiotemporal dynamics of a
predator–prey model with ratio-dependent Holling type II functional response. Efforts have also been made to study the Tur-
ing pattern formation in the predation model where predator has an alternative source of food which may have an important
role in promoting the persistence of predator–prey systems [5].

The paper is organised as follows: In Section 2, we introduce the ratio-dependent predator–prey model with diffusion and
its non-dimensionalisation followed by the biological meanings of the parameters involved. In Section 3, we briefly revisit
various properties for non-spatial case. The stability of the diffusive model alongwith the mathematical expression for Turing
space has been discussed in Section 4. Section 5, illustrates the emergence of Turing patterns via numerical simulations. Fi-
nally in Section 6, the paper ends with some conclusions and comments.

2. Mathematical model and its analysis

The non-spatial ratio-dependent predator–prey model with Holling type II functional response is given by the following
set of first-order non-linear ordinary differential equations:

du
dt
¼ au 1� u

k1

� �
� puv

muþ nv ¼ g1ðu; vÞ; ð2:1aÞ

dv
dt
¼ bv 1� v

k2

� �
þ epuv

muþ nv � dv ¼ g2ðu;vÞ; ð2:1bÞ

uð0Þ > 0; vð0Þ > 0; ð2:1cÞ

where u and v stand for the prey and predator density respectively at time t; a; k1; b; k2; p; e ð0 < e < 1Þ and d are all po-
sitive constants that stand for prey intrinsic growth rate, carrying capacity of the prey species, predator intrinsic growth rate,
carrying capacity of the predator species, predation rate, conversion factor and predator death rate respectively; m and n are
the half-saturation constants. To define the model (2.1) at the origin, we adopt the technique of Xiao and Ruan [19]. We now
proceed to consider the spatial ratio-dependent predator–prey system in which the spatial aspects is described by diffusion.
Incorporating the diffusion terms into Eq. (2.1), we arrive at the following spatially explicit system:

@uðt; x; yÞ
@t

¼ au 1� u
k1

� �
� puv

muþ nv þ D11r2uþ D12r2v ; ð2:2aÞ

@vðt; x; yÞ
@t

¼ bv 1� v
k2

� �
þ epuv

muþ nv � dv þ D21r2uþ D22r2v ; ð2:2bÞ

uð0; x; yÞ > 0; vð0; x; yÞ > 0; where r2 � @2

@x2 þ
@2

@y2 ð2:2cÞ

represents the usual Laplacian operator. The parameters D22; D11 are the positive self-diffusion coefficients while D12; D21

are the cross-diffusion coefficients of the predator and the prey species respectively. Usually, diffusion is considered as a spa-
tial transmission way, which moves from high concentration to low concentration and biologically, cross-diffusion means
that the prey species exercise a self-defense mechanism to protect themselves from the attack of the predator. The value

L.N. Guin / Applied Mathematics and Computation 226 (2014) 320–335 321



Download English Version:

https://daneshyari.com/en/article/4628401

Download Persian Version:

https://daneshyari.com/article/4628401

Daneshyari.com

https://daneshyari.com/en/article/4628401
https://daneshyari.com/article/4628401
https://daneshyari.com

