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a b s t r a c t

In this paper, new a posteriori error estimates for the local discontinuous Galerkin (LDG)
formulation applied to transient convection–diffusion problems in one space dimension
are presented and analyzed. These error estimates are computationally simple and are
computed by solving a local steady problem with no boundary conditions on each element.
We first show that the leading error term on each element for the solution is proportional
to a ðpþ 1Þ-degree right Radau polynomial while the leading error term for the solution’s
derivative is proportional to a ðpþ 1Þ-degree left Radau polynomial, when polynomials of
degree at most p are used. These results are used to prove that, for smooth solutions, these
error estimates at a fixed time converge to the true spatial errors in the L2-norm under
mesh refinement. More precisely, we prove that our LDG error estimates converge to the
true spatial errors at Oðhpþ5=4Þ rate. Finally, we prove that the global effectivity indices in
the L2-norm converge to unity at Oðh1=2Þ rate. Our computational results indicate that
the observed numerical convergence rates are higher than the theoretical rates.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Problems involving convection and diffusion arise in several important applications throughout science and engineering,
including fluid flow, heat transfer, etc. Their typical solutions exhibit boundary and/or interior layers. Designing and devel-
oping efficient, accurate, and robust numerical methods to address these problems has survived as a classical challenge since
the earliest days of digital computation. The basic reasons for the difficulty involve (i) the development and tracking of dis-
continuities (for convection problems) or sharp transition layers (for convection–diffusion problems) and (ii) the generation
of numerical solutions that fail to satisfy physical (e.g., entropy) principles. Classical numerical methods such as finite dif-
ference, finite volume, and finite element schemes have been developed to overcome these difficulties to a certain extent.
However, they each suffer limitations that can potentially be overcome by the discontinuous Galerkin (DG) method, which
combines the best features of each of the more traditional approaches. DG methods are becoming important techniques for
the computational solution of many real-world problems. Many results for convection and diffusion equations indicate that
DG methods provide effective ways to generate accurate error estimates.

In this paper we develop and analyze a posteriori error estimates of the spatial errors for the local DG (LDG) method ap-
plied to the transient convection–diffusion problems in one space dimension. The LDG finite element method is an extension
of the DG method aimed at solving differential equations containing higher than first-order spatial derivatives. The DG meth-
od is a class of finite element methods using completely discontinuous piecewise polynomials for the numerical solution and
the test functions. DG method combines many attractive features of the classical finite element and finite volume methods. It
is a powerful tool for approximating some partial differential equations which model problems in physics, especially in fluid
dynamics or electrodynamics. DG method was initially introduced by Reed and Hill in 1973 as a technique to solve neutron
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transport problems [55]. In 1974, LaSaint and Raviart [54] presented the first numerical analysis of the method for a linear
advection equation. Since then, DG methods have been used to solve ordinary differential equations [7,29,52,54], hyperbolic
[25–28,43,44,47,48] and diffusion and convection–diffusion [23,24,64,49] partial differential equations. Consult [42] and the
references cited therein for a detailed discussion of the history of DG methods and a list of important citations on the DG
method and its applications.

DG methods allow discontinuous bases, which simplify both h-refinement (mesh refinement and coarsening) and p-
refinement (method order variation). However, for DG methods to be used in an adaptive framework one needs a posteriori
error estimates to guide adaptivity and stop the refinement process. The solution space consists of piecewise continuous
polynomial functions relative to a structured or unstructured mesh. As such, it can sharply capture solution discontinuities
relative to the computational mesh. It maintains local conservation on an elemental basis. The success of the DG method is
due to the following properties: (i) does not require continuity across element boundaries, (ii) is locally conservative, (iii) is
well suited to solve problems on locally refined meshes with hanging nodes, (iv) exhibits strong superconvergence that can
be used to estimate the discretization error, (v) has a simple communication pattern between elements with a common face
that makes it useful for parallel computation and (vi) it can handle problems with complex geometries to high order.

The LDG method for solving convection–diffusion problems was first introduced by Cockburn and Shu in [45]. They fur-
ther studied the stability and error estimates for the LDG method. Castillo et al. [31] presented the first a priori error analysis
for the LDG method for a model elliptic problem. They considered arbitrary meshes with hanging nodes and elements of var-
ious shapes and studied general numerical fluxes. They showed that, for smooth solutions, the L2 errors inru and in u are of
order p and pþ 1=2, respectively, when polynomials of total degree not exceeding p are used. Cockburn et al. [40] presented
a superconvergence result for the LDG method for a model elliptic problem on Cartesian grids. They identified a special
numerical flux for which the L2-norms of the gradient and the potential are of orders pþ 1=2 and pþ 1, respectively, when
tensor product polynomials of degree at most p are used.

Recent work on other numerical methods for convection–diffusion and for pure diffusion problems has been reviewed by
Cockburn et al. [41]. In particular, Baumann and Oden [24] presented a new numerical method which exhibits the best fea-
tures of both finite volume and finite element techniques. Rivière and Wheeler [56] introduced and analyzed a locally con-
servative DG formulation for nonlinear parabolic equations. They derived optimal error estimates for the method. Rivière
et al. [58] analyzed several versions of the Baumann and Oden method for elliptic problems. Wihler and Schwab [65] proved
robust exponential rates of convergence of DG methods for stationary convection–diffusion problems in one space dimen-
sion. We also mention the work of Castillo, Cockburn, Houston, Süli, Schötzau and Schwab [59,32,33] in which optimal a pri-
ori error estimates for the hp-version of the LDG method for convection–diffusion problems are investigated. Later Adjerid
et al. [8,9] investigated the superconvergence of the LDG method applied to diffusion and transient convection–diffusion
problems. More recently, Celiker and Cockburn [34] proved a new superconvergence property of a large class of finite ele-
ment methods for one-dimensional steady state convection–diffusion problems. Finally, we mention the recent work of Shu
et al. [35,36] in which the superconvergence property of the LDG scheme for convection–diffusion equations in one space
dimension are proven.

In recent years, the study of superconvergence and a posteriori error estimates of DG methods has been an active research
field in numerical analysis, see the monographs by Verfürth [61], Wahlbin [63], and Babuška and Strouboulis [15]. A knowl-
edge of superconvergence properties can be used to (i) construct simple and asymptotically exact a posteriori estimates of
discretization errors and (ii) help detect discontinuities to find elements needing limiting, stabilization and/or refinement.
Typically, a posteriori error estimators employ the known numerical solution to derive estimates of the actual solution errors.
They are also used to steer adaptive schemes where either the mesh is locally refined (h-refinement) or the polynomial de-
gree is raised (p-refinement). For an introduction to the subject of a posteriori error estimation see the monograph of Ains-
worth and Oden [14]. Superconvergence properties for finite element and DG methods have been studied in
[7,12,46,54,66,60] for ordinary differential equations, [3,16,7,10] for hyperbolic problems and [1,2,4,9–11,22,30,34,37,68]
for diffusion and convection–diffusion problems. A posteriori error estimates for finite volume and mixed finite element
methods for elliptic problems have been developed in [62,53,13]. Several a posteriori DG error estimates are known for
hyperbolic [38,39,50] and diffusive [51,57] problems.

Related theoretical results in the literature including superconvergence results and error estimates of the LDG methods
for convection–diffusion problems are given in [8,9,35,37,34,67]. Cheng and Shu [35] studied the convergence behavior of
the LDG methods when applied to one-dimensional time dependent convection–diffusion equations. They observed that
the LDG solution is superconvergent towards a particular projection of the exact solution. The order of superconvergence
is observed to be pþ 2 when polynomials of degree at most p are used. However, there is no theoretical justification of these
results so far. In [37], Cheng and Shu studied the superconvergence property for the DG and LDG methods for solving one-
dimensional time-dependent convection and convection–diffusion equations. They proved superconvergence towards a par-
ticular projection of the exact solutions. The order of superconvergence is proved to be pþ 3=2 when p-degree piecewise
polynomials with p P 1 are used. In [7], Adjerid et al. used the DG method to solve one-dimensional transient hyperbolic
problems and showed that the local error on each element is proportional to a Radau polynomial. They further constructed
implicit residual-based a posteriori error estimates but they did not prove their asymptotic exactness. Later, Adjerid and Bac-
couch [3,21] investigated the global convergence of the implicit residual-based a posteriori error estimates of Adjerid et al.
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