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In this paper, the Lie group analysis method is applied to the geometric average Asian
option pricing equation in financial problems. Firstly, the complete Lie symmetry group
and infinitesimal generators of this equation are derived. Then the optimal system with
one parameter for the Lie symmetry algebra are obtained, which gives the possibility to
describe a complete set of invariant solutions to the pricing equation. Finally, based on
the optimal system the symmetry reductions and corresponding closed form solutions
for the pricing equation are proposed.
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1. Introduction

An Asian option is a special type of option contract, which is an averaging option whose terminal payoff is determined by
the average underlying price over some pre-set period of time [1–13]. Because of this fact, Asian options have a lower vol-
atility and hence render them cheaper relative to the usual European option and American option, where the payoff of the
option contract depends on the price of the underlying instrument at exercise. They are commonly traded on currencies and
commodity products which have low trading volumes. Asian options are so called because they were introduced in Tokyo,
Japan, in 1987 when Banker’s Trust Tokyo office used them for pricing average options on crude oil contracts. Thus Asian
options are one of the basic forms of path-depending exotic options.

Asian options are broadly segregated into three categories: arithmetic average Asian options, geometric average Asian
options and both these forms can be averaged on a weighted average basis. In general, there are not general explicit pricing
formulae for the arithmetic averaged Asian options because the distribution of the arithmetic average of a set of lognormal
distributions is not explicit. People think that the distribution of the geometric average of a set of lognormal distribution is
also lognormal. So along this line Kemna and Vorst [6] and Conze and Viswanathan [7] obtain an explicit pricing formula for
the Asian options on geometric average. Moreover, Bouaziz et al. [1] use a simple linearization procedure and propose an
approximate closed-form solution to the pricing of ‘‘floating-strike’’ Asian options. The approximation suggested by Turnbull
and Wakeman (TW) [8] makes use of the fact that the distribution under arithmetic averaging is approximately lognormal,
and they put forward the first and second moments of the average in order to price the option. Caverhill and Clewlow [9] use
the fast Fourier transform to obtain numerical approximations of the price of Asian options. Geman and Yor [10] propose an
analytical study of Asian options. In particular, they characterize the case where an Asian call option price is higher than a
standard European call option price. Alziary et al. [11] the Asian options analytically and numerical by a P.D.E. approach. Ju
[12] produces an analytical approximation to price Asian options by assuming that even though the weighted average of

0096-3003/$ - see front matter Crown Copyright � 2013 Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2013.10.021

⇑ Corresponding author.
E-mail address: jinyanwh2013@163.com (Y. Jin).

Applied Mathematics and Computation 226 (2014) 598–605

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2013.10.021&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.10.021
mailto:jinyanwh2013@163.com
http://dx.doi.org/10.1016/j.amc.2013.10.021
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


lognormal variables is not lognormal, one can still be able to approximate the weighted average by a lognormal variable if
the first two moments of moments are true. Most recently, Devreese et al. [13] derive a closed-form solution for the price of
an average strike as well as an average price geometric Asian option, by making use of the path integral formulation.

There are two main classes of Asian options, the average price options and the average strike options. The corresponding
terminal call payoff for the two classes are maxfJT � K;0g and maxfST � JT ;0g for a call option, respectively. Here, ST is the
asset price at expiry, K is the strike price and JT denotes some form of average of the price of the underlying asset over the
averaging period ½0; T�, either the arithmetical or geometrical average of the asset price. The value of JT depends on the real-
ization of the asset price path. The average price Asian options cost less than plain vanilla options, which are useful in pro-
tecting the owner from sudden short-lasting price changes in the market for example due to order imbalances.

The modern analysis of option pricing begins with the work of Black and Scholes [14] and Merton [15] in the early 1970s.
The resulting model, called the Black–Scholes equation is a linear partial differential equation whose solution gives the fair
price of a contingent claim. Under suitable assumptions, the Asian options can also be described by a linear partial differen-
tial equation [5]. There are two ways to solve the option pricing problems: numerical treatments [16–18] and analytical
methods [19,18–21]. Recent years, there are an increasing number of researches about the use of symmetry analysis for
the option pricing differential equations [20,21]. It is worth pointing out that the pioneering paper of Bordag and Chmakova
[20] investigates the evaluation of an option hedge-cost under relaxation of the price-taking assumption by Lie group meth-
od. Specifically, they find some explicit solutions of the nonlinear Black–Scholes equation which incorporates the feedback-
effect of a large trader in case of market illiquidity and show that these typical solutions would have a payoff which approx-
imates a strangle. For a given differential equation, one first uses Lie point symmetry analysis to obtain its symmetry groups.
Then under some mild conditions one can write down the reduced equation for the invariant solution with respect to a sub-
group. However, there is almost always an infinite number of the subgroups so we need an optimal system to classify all
possible group-invariant solutions to the option pricing differential equations [20,21]. The optimal systems and their corre-
sponding group-invariant solutions have been discussed for a number of partial differential equations [20–24].

In the present paper, we construct the group-invariant optimal system of the Asian option pricing equation, from which
the interesting exact closed form solutions are obtained. The paper is organized as follows. We present the geometric average
Asian option pricing Black–Scholes equation in Section 2. In Section 3, the complete Lie symmetry group and infinitesimal
generators of this pricing equation are derived, and the optimal system with one parameter for the Lie symmetry algebra is
given. In Section 4, the similarity variables and closed form solutions of the pricing equation are obtained by using the opti-
mal system. The conclusions are stated in Section 5.

2. Geometric average Asian options

In this section we derive the governing differential equation for the price of a geometric average Asian option using the
Black–Scholes approach. We consider a call option contract that is written at time s ¼ 0. The holder of the contract will have
a right to claim the difference between the average rate JT and a strike price K at maturity T, i.e., the payoff of this Asian call
option is maxfJT � K;0g. The average rate JT is determined by the geometric mean of the underlying asset price
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for continuous geometric averaging, where Ssi
is the asset price at discrete time si.

Let CðS; J; sÞ denote the value of the Asian option, which is a function of time and the two state variables, asset price S and
average asset value J. Consider a portfolio that contains one unit of the Asian option and �D unit of the underlying asset. We
then choose D such that the stochastic components associated with the option and the underlying asset cancel each other
out. Assume the asset price dynamics to be given by

dS
S
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where W is the standard Brownian process, l and r are the expected rate of return and volatility of the asset price, respec-
tively. Let P denote the value of the above portfolio, so the portfolio value is given by

P ¼ CðS; J; sÞ � DS ð4Þ

and assuming D to be kept instantaneously ‘‘frozen’’. After considering the dividend yield q on the asset, the differential of P
can be found by Ito’s formula [5] as
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