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a b s t r a c t

In this paper, the least squares solution of the matrix equation AXBþ CYD ¼ E for symmet-
ric arrowhead matrices with the least norm is discussed. By using Moore–Penrose inverse
and the Kronecker product, the general expression of the solution to this problem is
derived. A corresponding numerical algorithm and an example are also given.

� 2013 Published by Elsevier Inc.

1. Introduction and preliminaries

In this paper the following notations are used. Let Rm�n be the set of all m� n real matrices, ORn�n be the set of all n� n
orthogonal matrices, and In be the identity matrix of order n. We denote by Aþ and kAk the Moore–Penrose inverse and the
Frobenius norm of a real matrix A, respectively. For A;B 2 Rm�n, let ðA;BÞ :¼ trðBT AÞ denote the inner product of matrices A
and B. Therefore, Rm�n is a complete inner product space and the norm of a matrix generated by the inner product is the
Frobenius norm, i.e. kAk ¼< A;A>1=2. Let A ¼ ðaijÞm�n; B 2 Rp�q. We denote by A� B ¼ ðaijBÞ 2 Rmp�nq the Kronecker product
of A and B. And vecðAÞ stands for the vector ða11; a21; . . . ; am1; a12; a22; . . . ; am2; . . . ; a1n; a2n; . . . ; amnÞT .

Definition 1.1 [1]. Let A 2 Rn�n. A is called the symmetric arrowhead matrices if it has the following form:

A ¼

a1 b1 b2 � � � bn�1

b1 a2 0 � � � 0
b2 0 a3 � � � 0

..

. ..
. ..

. . .
. ..

.

bn�1 0 0 � � � an

266666664

377777775:

and vecsðAÞ stands for the corresponding vector ða1; b1; . . . ; bn�1; a2; . . . ; anÞT .
We denote all symmetric n� n arrowhead matrices by SAR

n�n.
Such matrices arises in the description of radiationless transitions in isolated molecules and of oscillators vibrationally

coupled with a Fermi liquid [2]. In modern control theory, symmetric arrowhead matrices could represent the parameter
matrices of in the control equations of nonlinear control systems [2]. Recent developments in electromagnetic compatibility
have also predicted potential applications of symmetric arrowhead matrices in the mathematical representation of electro-
magnetic interference factors.
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Considering the following matrix equation

AXBþ CYD ¼ E; ð1:1Þ

many studies have been done on the solution and the corresponding approximation problems of this matrix equation. In
1987, Chu studied the compatibility of Eq. (1.1) by using the general singular value decomposition (GSVD), and gave the least
norm solution when the solution exists [3]. In 1998, Xu and Zheng obtained the least squares solution and the symmetric
(anti-symmetric) solution of AXAH þ CYCH ¼ F by using the canonical correlation decomposition (CCD) [4]. In 2006, Liao,
Bai and Lei studied the least squares solution of AXBH þ CYDH ¼ E with the least norm by combining CCD and GSVD [5].
The corresponding numerical algorithms are also proposed [8–11].

In this paper, we mainly consider the least-square solutions to matrix equation (1.1) for arrow-head matrices, which is
described as follows.

Problem 1. Given A 2 Rm�n, B 2 Rn�s, C 2 Rm�k, D 2 Rk�s, E 2 Rm�s, and let

SE ¼ ½X;Y �jX 2 SAR
n�n;Y 2 SAR

k�k; kAXBþ CYD� Ek ¼min
n o

:

Finding out ½bX ; bY � 2 SE such that

kbXk2 þ kbYk2 ¼ min
½X;Y �2SE

ðkXk2 þ kYk2Þ: ð1:2Þ

Our motivation are twofold: (1) The least-square solutions to matrix equation (1.1) have its own importance and appli-
cations. For instance, it is essential to the inverse scattering problem for the Helmholtz equation [12]. And the arrowhead
matrix is an important class of matrices with many applications in linear modeling and control theory (see [2] for more ref-
erences). The least-square solutions to (1.1) for symmetric and asymmetric matrices have been discussed [3–5], and this arti-
cle could extend the results for arrow head matrices by solving Problem 1. (2) The least-square solutions to (1.1) for
symmetric arrowhead matrices have several potential applications. For example, the generalized inverse eigenvalue problem
(see [13,14] for details) can be reformulated as AX ¼ KBX, where all column vectors of X are given eigenvectors, K is a diag-
onal matrix with each diagonal element being the given eigenvalue, and A; B are two symmetric arrowhead matrices to be
determined. If the inverse eigenvalue problem is inconsistent, i.e., there exist no A;B such that AX ¼ KBX, then we can obtain
the best approximations by solving Problem 1.

To solve Problem 1, we utilize the Kronecker product and the Moore–Penrose inverse, based on which, the expression of
SE is obtained and the explicit formula of the solution of Problem 1 is derived.

This article is organized as follows. In Section 2, we give the main results of this paper. In Section 3, we propose an algo-
rithm based on theorems in Section 2, and demonstrate the algorithm by a numerical example.

2. Solutions of Problem 1

In this section, we will discuss the solution of Problem 1. We begin with some lemmas.

Lemma 2.1. Let X 2 SARn�n, then vecðXÞ ¼ HnvecsðXÞ, where

Hn ¼

e1 e2 e3 � � � en�1 en 0 0 � � � 0 0
0 e1 0 � � � 0 0 e2 0 � � � 0 0
0 0 e1 � � � 0 0 0 e3 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 � � � e1 0 0 0 � � � en�1 0
0 0 0 � � � 0 e1 0 0 � � � 0 en
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; ð2:1Þ

and ei is a unit vector with the ith element one and the others zero.

Proof. If X 2 SARn�n, form Definition 1.1, we have

X ¼

x11 x21 x31 � � � xn1

x21 x22 0 � � � 0
x31 0 x33 � � � 0

..

. ..
. ..

. . .
. ..

.

xn1 0 0 � � � xnn

266666664

377777775¼ x11ðe1;0; . . . ;0;0Þ þ x21ðe2;e1; . . . ;0;0Þ

þ � � � þ xðn�1Þ1ðen�1;0; . . . ;e1;0Þ þ xn1ðen;0; . . . ;0;e1Þ þ x22ð0;e2;0; . . . ;0Þ þ x33ð0;0;e3; . . . ;0Þ þ � � � þ xnnð0;0; . . . ;0;enÞ:
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