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1. Introduction

Traditional conservation integrals, such as J-integral, L-integral and M-integral, play an important role in finding out the
physical quantities of material points with singularities and the interaction among singularities in elastic field [1-5]. For
example, apart from the crack extension force, Cherepanov [6] gives the known Peach-Koehler formula by calculating J-inte-
gral around an edge dislocation as follows
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where (by, by) = b(cos y,siny) is the Burgers vector of an edge dislocation, gj; are the stresses at infinity and ej; is the
permutation symbol. The formula (1) means a configuration force acting on the dislocation. However, when letting
oy = O atinfinity, we know that J; = 0 in formula (1). That is, it is difficult for us to know whether there exists a self-balanced
singular elastic field caused by an edge dislocation by using J-integral without loading.

It is well known that mechanisms of dislocation plasticity are directly related to the self-balanced singular elastic field
caused by edge dislocations [7]. As mentioned in [8], dislocation motion on the primary slip system is severely hindered
by the presence of dislocations on the secondary slip systems, which is the reason for the high stage-II hardening rate in
materials caused by the possibility of secondary slips. Therefore, it is significant to recognize the characteristics of disloca-
tions before or after loading.

Recently, it is found that for any analytic function ¢(z), there exists SW-integral in the sense of Noether’s theorem [9-12]

7{ (2)[¢/(2)dz = 0. )

Here, {(z) represents any conformal transformations, so that there are countless conserved quantities and path-indepen-
dent integrals. Clearly, by adjusting the conformal transformation {(z), a finite physical quantity can always be obtained
when calculating SW-integral (2) around a material point with any order singularity.
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In this note, an edge dislocation with or without the loading at infinity is considered by using SW-integral (2) and some
new physical quantities are obtained. For comparison, a concentrated force acting at the origin is also calculated. The pur-
pose is to show some light on edge dislocations with the measurement before or after loading.

2. An edge dislocation

Under the consideration of a plane stress or plane strain problem, suppose that an elastic body contains an edge disloca-
tion. The complex Kolosov-Muskhelishvili potentials ¢(z) and y(z) are given by [6,13]
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where G is the shear modulus, (b +ib;) =b(cosy+isiny) is a linear dislocation, x =3 —4v for plane strain,
K = (3 —v)/(1+v) for plane stress and v the Poisson’s ratio. Please note that the rigid body translation and rotation have
been neglected in (3a) and (3b), which do not affect elastic deformation.

Applying the SW-integral (2) to the complex potentials (3a) and (3b) in an area surrounded by the dotted lines shown in
Fig 1(a), one has
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where the integral paths Iy and I',, are in an anticlockwise direction.
In order to obtain some physical quantities, the following basic integral will be used
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By letting {(z) = z, it is derived from (4a) and (4b) that
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Fig. 1. (a) An edge dislocation b at the origin; (b) a concentrated force P acting at the origin.
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